forked from souzatharsis/open-quant-live-book
-
Notifications
You must be signed in to change notification settings - Fork 0
/
book.bib
executable file
·5087 lines (4363 loc) · 180 KB
/
book.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
@article{doi:10.1002/for.3980130102,
author = {Lin, Jin-Lung and Granger, C. W. J.},
title = {Forecasting from non-linear models in practice},
journal = {Journal of Forecasting},
volume = {13},
number = {1},
pages = {1-9},
keywords = {Non-linear models, multi-step forecasts, bootstrap estimates},
doi = {10.1002/for.3980130102},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/for.3980130102},
eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1002/for.3980130102},
abstract = {Abstract If a simple non-linear autoregressive time-series model is suggested for a series, it is not straightforward to produce multi-step forecasts from it. Several alternative theoretical approaches are discussed and then compared with a simulation study only for the two-step case. It is suggested that fitting a new model for each forecast horizon may be a satisfactory strategy.},
year = {1994}
}
@Misc{Greenwich_2019,
author = "Johnson, Richard",
title = {Demystifying Alternative Data},
year = {2019},
Howpublished = {https://www.greenwich.com/asset-management/demystifying-alternative-data},
publisher={Greenwich Associates},
Note = {Last accessed on July 6, 2019}
}
@book{Wickham:2017:RDS:3086927,
author = {Wickham, Hadley and Grolemund, Garrett},
title = {R for Data Science: Import, Tidy, Transform, Visualize, and Model Data},
year = {2017},
isbn = {1491910399, 9781491910399},
edition = {1st},
publisher = {O'Reilly Media, Inc.},
}
@Book{Choudhry:2007,
title={An Introduction to Value-at-Risk},
author={Choudhry, M. and Tanna, K.},
isbn={9780470033777},
series={Securities Institute},
year={2007},
publisher={Wiley}
}
@book{McCulloh:2013:SNA:2829081,
author = {McCulloh, I. and Armstrong, H. and Johnson, A.},
title = {Social Network Analysis with Applications},
year = {2013},
isbn = {1118169476, 9781118169476},
edition = {1st},
publisher = {Wiley Publishing},
}
@book{CaseBerg:01,
abstract = {{This book builds theoretical statistics from the first
principles of probability theory. Starting from the basics
of probability, the authors develop the theory of
statistical inference using techniques, definitions, and
concepts that are statistical and are natural extensions
and consequences of previous concepts. Intended for
first-year graduate students, this book can be used for
students majoring in statistics who have a solid
mathematics background. It can also be used in a way that
stresses the more practical uses of statistical theory,
being more concerned with understanding basic statistical
concepts and deriving reasonable statistical procedures for
a variety of situations, and less concerned with formal
optimality investigations.}},
added-at = {2009-10-28T04:42:52.000+0100},
author = {Casella, G. and Berger, R.},
biburl = {https://www.bibsonomy.org/bibtex/21597678f36e23439610affbf46adec1c/jwbowers},
citeulike-article-id = {105644},
date-added = {2007-09-03 22:45:16 -0500},
date-modified = {2007-09-03 22:45:16 -0500},
howpublished = {{Textbook Binding}},
interhash = {2dd8caad6c0b6fb80e6334986a231a05},
intrahash = {1597678f36e23439610affbf46adec1c},
isbn = {0534243126},
keywords = {methodology probability statistics},
month = {June},
opturl = {http://www.amazon.fr/exec/obidos/ASIN/0534243126/citeulike04-21},
publisher = {{Duxbury Resource Center}},
timestamp = {2009-10-28T04:42:57.000+0100},
title = {Statistical Inference},
year = 2001
}
@article{Sun2016,
abstract = {•Transitions between patterns are emergent properties in spatial epidemics.•Two types of pattern transitions in infectious diseases are shown.•We provide possible mechanisms of pattern transition in spatial epidemics.•Pattern transition promotes complexity in spatial epidemics.•The results are applicable in medical science, ecology, quantitative finance and so on.},
affiliation = {Complex Systems Research Center, Shanxi University, Taiyuan, Shanxi 030006, PR China; School of Mathematical Sciences, Fudan University, Shanghai 200433, PR China; Department of Vector Ecology and Environment, Nagasaki University Institute of Tropical Medicine (NEKKEN), Nagasaki 852-8523, Japan; Center of Mathematics for Social Creativity, Hokkaido University, Sapporo 060-0812, Japan; Department of Mathematics, Southeast University, Nanjing 210096, PR China; Department of Mathematics and Statistics, University of Victoria, Victoria BC V8W 3R4, Canada; Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Fukuoka, 816-8580, Japan},
author = {Sun, G. and Jusup, M. and Jin, Z. and Wang, Y. and Wang, Z.},
doi = {10.1016/j.plrev.2016.08.002},
journal = {Physics of Life Reviews},
keywords = {Reaction–diffusion equation; Cellular automata; Spatial heterogeneity; Seasonality and noise; Coherence resonance; Cyclic evolution},
language = {English},
number = {Complete},
pages = {43-73},
title = {Review},
volume = {19},
year = {2016},
}
@article{DBLP:journals/amc/Li15a,
author = {Li L.},
title = {Patch invasion in a spatial epidemic model},
journal = {Applied Mathematics and Computation},
volume = {258},
pages = {342--349},
year = {2015},
url = {http://dx.doi.org/10.1016/j.amc.2015.02.006},
doi = {10.1016/j.amc.2015.02.006},
timestamp = {Sat, 21 Mar 2015 13:18:42 +0100},
biburl = {http://dblp.uni-trier.de/rec/bib/journals/amc/Li15a},
bibsource = {dblp computer science bibliography, http://dblp.org}
}
@article{Sun20141507,
title = "Influence of time delay and nonlinear diffusion on herbivore outbreak ",
journal = "Communications in Nonlinear Science and Numerical Simulation ",
volume = "19",
number = "5",
pages = "1507 - 1518",
year = "2014",
note = "",
issn = "1007-5704",
doi = "http://doi.org/10.1016/j.cnsns.2013.09.016",
url = "http://www.sciencedirect.com/science/article/pii/S1007570413004164",
author = "G. Sun and A. Chakraborty and Q. Liu and Z. Jin and K. E. Anderson and B. Li",
keywords = "Herbivore-plant",
keywords = "Time delay",
keywords = "Spatial diffusion",
keywords = "Outbreak",
keywords = "Synchrony "
}
@article{PhysRevE.90.042807,
title = {Nonlinear growth and condensation in multiplex networks},
author = {Nicosia, V. and Bianconi, G. and Latora, V. and Barthelemy, M.},
journal = {Phys. Rev. E},
volume = {90},
issue = {4},
pages = {042807},
numpages = {13},
year = {2014},
month = {Oct},
publisher = {American Physical Society},
doi = {10.1103/PhysRevE.90.042807},
url = {https://link.aps.org/doi/10.1103/PhysRevE.90.042807}
}
@Article{Lacasa2015,
author={Lacasa, L.
and Nicosia, V.
and Latora, V.},
title={Network structure of multivariate time series},
journal={Scientific Reports},
year={2015},
month={Oct},
day={21},
publisher={The Author(s) SN -},
volume={5},
pages={15508 EP -},
note={Article},
url={http://dx.doi.org/10.1038/srep15508}
}
@article{Lü20111150,
title = "Link prediction in complex networks: A survey ",
journal = "Physica A: Statistical Mechanics and its Applications ",
volume = "390",
number = "6",
pages = "1150 - 1170",
year = "2011",
note = "",
issn = "0378-4371",
doi = "http://doi.org/10.1016/j.physa.2010.11.027",
url = "http://www.sciencedirect.com/science/article/pii/S037843711000991X",
author = "L. Lü and T. Zhou",
keywords = "Link prediction",
keywords = "Complex networks",
keywords = "Node similarity",
keywords = "Maximum likelihood methods",
keywords = "Probabilistic models "
}
@article{1367-2630-17-7-073029,
author={E. Cozzo and M. Kivelä and M. De Domenico and A. Solé-Ribalta and A. Arenas and S. Gómez and M. A.
Porter and Y. Moreno},
title={Structure of triadic relations in multiplex networks},
journal={New Journal of Physics},
volume={17},
number={7},
pages={073029},
url={http://stacks.iop.org/1367-2630/17/i=7/a=073029},
year={2015},
abstract={Recent advances in the study of networked systems have highlighted that our interconnected world is composed of networks that are coupled to each other through different ‘layers’ that each represent one of many possible subsystems or types of interactions. Nevertheless, it is traditional to aggregate multilayer networks into a single weighted network in order to take advantage of existing tools. This is admittedly convenient, but it is also extremely problematic, as important information can be lost as a result. It is therefore important to develop multilayer generalizations of network concepts. In this paper, we analyze triadic relations and generalize the idea of transitivity to multiplex networks. By focusing on triadic relations, which yield the simplest type of transitivity, we generalize the concept and computation of clustering coefficients to multiplex networks. We show how the layered structure of such networks introduces a new degree of freedom that has a fundamental effect on transitivity. We compute multiplex clustering coefficients for several real multiplex networks and illustrate why one must take great care when generalizing standard network concepts to multiplex networks. We also derive analytical expressions for our clustering coefficients for ensemble averages of networks in a family of random multiplex networks. Our analysis illustrates that social networks have a strong tendency to promote redundancy by closing triads at every layer and that they thereby have a different type of multiplex transitivity from transportation networks, which do not exhibit such a tendency. These insights are invisible if one only studies aggregated networks.}
}
@article{PhysRevLett.111.058702,
title = {Coevolution and Correlated Multiplexity in Multiplex Networks},
author = {Kim, J. Y. and Goh, K. I.},
journal = {Phys. Rev. Lett.},
volume = {111},
issue = {5},
pages = {058702},
numpages = {5},
year = {2013},
month = {Jul},
publisher = {American Physical Society},
doi = {10.1103/PhysRevLett.111.058702},
url = {https://link.aps.org/doi/10.1103/PhysRevLett.111.058702}
}
@Article{Battiston2017,
author="Battiston, F.
and Nicosia, V.
and Latora, V.",
title="The new challenges of multiplex networks: Measures and models",
journal="The European Physical Journal Special Topics",
year="2017",
volume="226",
number="3",
pages="401--416",
abstract="What do societies, the Internet, and the human brain have in common? They are all examples of complex relational systems, whose emerging behaviours are largely determined by the non-trivial networks of interactions among their constituents, namely individuals, computers, or neurons, rather than only by the properties of the units themselves. In the last two decades, network scientists have proposed models of increasing complexity to better understand real-world systems. Only recently we have realised that multiplexity, i.e. the coexistence of several types of interactions among the constituents of a complex system, is responsible for substantial qualitative and quantitative differences in the type and variety of behaviours that a complex system can exhibit. As a consequence, multilayer and multiplex networks have become a hot topic in complexity science. Here we provide an overview of some of the measures proposed so far to characterise the structure of multiplex networks, and a selection of models aiming at reproducing those structural properties and quantifying their statistical significance. Focusing on a subset of relevant topics, this brief review is a quite comprehensive introduction to the most basic tools for the analysis of multiplex networks observed in the real-world. The wide applicability of multiplex networks as a framework to model complex systems in different fields, from biology to social sciences, and the colloquial tone of the paper will make it an interesting read for researchers working on both theoretical and experimental analysis of networked systems.",
issn="1951-6401",
doi="10.1140/epjst/e2016-60274-8",
url="http://dx.doi.org/10.1140/epjst/e2016-60274-8"
}
@article{SandovalJunior2012187,
title = "Correlation of financial markets in times of crisis ",
journal = "Physica A: Statistical Mechanics and its Applications ",
volume = "391",
number = "1–2",
pages = "187 - 208",
year = "2012",
note = "",
issn = "0378-4371",
doi = "http://dx.doi.org/10.1016/j.physa.2011.07.023",
url = "http://www.sciencedirect.com/science/article/pii/S037843711100570X",
author = "L. S. Junior and I. De P. Franca",
keywords = "Financial markets",
keywords = "Crisis",
keywords = "Correlation matrix",
keywords = "Random matrix theory "
}
@article{10.1371/journal.pone.0107056,
author = {Tan, F. AND Xia, Y. AND Zhu, B.},
journal = {PLOS ONE},
publisher = {Public Library of Science},
title = {Link Prediction in Complex Networks: A Mutual Information Perspective},
year = {2014},
month = {09},
volume = {9},
url = {http://dx.doi.org/10.1371%2Fjournal.pone.0107056},
pages = {1-8},
abstract = {Topological properties of networks are widely applied to study the link-prediction problem recently. Common Neighbors, for example, is a natural yet efficient framework. Many variants of Common Neighbors have been thus proposed to further boost the discriminative resolution of candidate links. In this paper, we reexamine the role of network topology in predicting missing links from the perspective of information theory, and present a practical approach based on the mutual information of network structures. It not only can improve the prediction accuracy substantially, but also experiences reasonable computing complexity.},
number = {9},
doi = {10.1371/journal.pone.0107056}
}
@article{PhysRevLett.86.3200,
title = {Epidemic Spreading in Scale-Free Networks},
author = {Pastor-Satorras, R. and Vespignani, A.},
journal = {Phys. Rev. Lett.},
volume = {86},
issue = {14},
pages = {3200--3203},
numpages = {0},
year = {2001},
month = {Apr},
publisher = {American Physical Society},
doi = {10.1103/PhysRevLett.86.3200},
url = {http://link.aps.org/doi/10.1103/PhysRevLett.86.3200}
}
@Inbook{Barabasi2003,
author="Barab{\'a}si, Albert-L{\'a}szl{\'o}
and Ravasz, Erzs{\'e}bet
and Oltvai, Zolt{\'a}n",
editor="Pastor-Satorras, R.
and Rubi, M.
and Diaz-Guilera, A.",
title="Hierarchical Organization of Modularity in Complex Networks",
bookTitle="Statistical Mechanics of Complex Networks",
year="2003",
publisher="Springer Berlin Heidelberg",
address="Berlin, Heidelberg",
pages="46--65",
isbn="978-3-540-44943-0",
doi="10.1007/978-3-540-44943-0_4",
url="http://dx.doi.org/10.1007/978-3-540-44943-0_4"
}
@article{0295-5075-97-6-68006,
author={G. D'Agostino and A. Scala and V. Zlatić and G. Caldarelli},
title={Robustness and assortativity for diffusion-like processes in scale-free networks},
journal={EPL (Europhysics Letters)},
volume={97},
number={6},
pages={68006},
url={http://stacks.iop.org/0295-5075/97/i=6/a=68006},
year={2012}
}
@article{10.1371/journal.pone.0031929,
author = {Song, W.-M. AND Di Matteo, T. AND Aste, T.},
journal = {PLoS ONE},
publisher = {Public Library of Science},
title = {Hierarchical Information Clustering by Means of Topologically Embedded Graphs},
year = {2012},
month = {03},
volume = {7},
url = {http://dx.doi.org/10.1371%2Fjournal.pone.0031929},
pages = {1-14},
abstract = {<p>We introduce a graph-theoretic approach to extract clusters and hierarchies in complex data-sets in an unsupervised and deterministic manner, without the use of any prior information. This is achieved by building topologically embedded networks containing the subset of most significant links and analyzing the network structure. For a planar embedding, this method provides both the intra-cluster hierarchy, which describes the way clusters are composed, and the inter-cluster hierarchy which describes how clusters gather together. We discuss performance, robustness and reliability of this method by first investigating several artificial data-sets, finding that it can outperform significantly other established approaches. Then we show that our method can successfully differentiate meaningful clusters and hierarchies in a variety of real data-sets. In particular, we find that the application to gene expression patterns of lymphoma samples uncovers biologically significant groups of genes which play key-roles in diagnosis, prognosis and treatment of some of the most relevant human lymphoid malignancies.</p>},
number = {3},
doi = {10.1371/journal.pone.0031929}
}
@article{doi:10.1137/070710111,
author = {A. Clauset and C. R. Shalizi and M. E. J. Newman},
title = {Power-Law Distributions in Empirical Data},
journal = {SIAM Review},
volume = {51},
number = {4},
pages = {661-703},
year = {2009},
doi = {10.1137/070710111},
URL = {
http://dx.doi.org/10.1137/070710111
},
eprint = {
http://dx.doi.org/10.1137/070710111
}
}
@article{PhysRevLett.104.108702,
title = {Entropic Origin of Disassortativity in Complex Networks},
author = {Johnson, S. and Torres, J. J. and Marro, J. and Mu\~noz, M. A.},
journal = {Phys. Rev. Lett.},
volume = {104},
issue = {10},
pages = {108702},
numpages = {4},
year = {2010},
month = {Mar},
publisher = {American Physical Society},
doi = {10.1103/PhysRevLett.104.108702},
url = {http://link.aps.org/doi/10.1103/PhysRevLett.104.108702}
}
@article{1742-5468-2012-07-P07025,
author={G. Livan and J. Inoue and E. Scalas},
title={On the non-stationarity of financial time series: impact on optimal portfolio selection},
journal={Journal of Statistical Mechanics: Theory and Experiment},
volume={2012},
number={07},
pages={P07025},
url={http://stacks.iop.org/1742-5468/2012/i=07/a=P07025},
year={2012},
abstract={We investigate the possible drawbacks of employing the standard Pearson estimator to measure correlation coefficients between financial stocks in the presence of non-stationary behavior, and we provide empirical evidence against the well-established common knowledge that using longer price time series provides better, more accurate, correlation estimates. Then, we investigate the possible consequences of instabilities in empirical correlation coefficient measurements on optimal portfolio selection. We rely on previously published works which provide a framework allowing us to take into account possible risk underestimations due to the non-optimality of the portfolio weights being used in order to distinguish such non-optimality effects from risk underestimations genuinely due to non-stationarities. We interpret such results in terms of instabilities in some spectral properties of portfolio correlation matrices.}
}
@article{PhysRevE.94.062306,
title = {Parsimonious modeling with information filtering networks},
author = {Barfuss, W. and Massara, G. P. and Di Matteo, T. and Aste, T.},
journal = {Phys. Rev. E},
volume = {94},
issue = {6},
pages = {062306},
numpages = {12},
year = {2016},
month = {Dec},
publisher = {American Physical Society},
doi = {10.1103/PhysRevE.94.062306},
url = {http://link.aps.org/doi/10.1103/PhysRevE.94.062306}
}
@ARTICLE{2016arXiv160207349B,
author = {{Barfuss}, W. and {Massara}, G. P. and {Di Matteo}, T. and
{Aste}, T.},
title = "{Parsimonious modeling with Information Filtering Networks}",
journal = {ArXiv e-prints},
archivePrefix = "arXiv",
eprint = {1602.07349},
primaryClass = "cs.IT",
keywords = {Computer Science - Information Theory, Statistics - Machine Learning},
year = 2016,
month = feb
}
@article{Morales20136470,
title = "Non-stationary multifractality in stock returns ",
journal = "Physica A: Statistical Mechanics and its Applications ",
volume = "392",
number = "24",
pages = "6470 - 6483",
year = "2013",
note = "",
issn = "0378-4371",
doi = "http://dx.doi.org/10.1016/j.physa.2013.08.037",
url = "http://www.sciencedirect.com/science/article/pii/S0378437113007668",
author = "R. Morales and T. Di Matteo and T. Aste",
keywords = "Multifractality",
keywords = "Generalised Hurst exponent",
keywords = "Multifractal models "
}
@article{song2008analysis,
title={Analysis on filtered correlation graph for information extraction},
author={Song, W.-M. and Aste, T. and Di Matteo, T.},
journal={Statistical Mechanics of Molecular Biophysics},
pages={88},
year={2008}
}
@article{musmeci2016interplay,
title={Interplay between past market correlation structure changes and future volatility outbursts},
author={Musmeci, N. and Aste, T. and Di Matteo, T.},
journal={Scientific Reports},
volume={6},
pages={36320},
year={2016},
publisher={Nature Publishing Group}
}
@article{pozzi2008centrality,
title={Centrality and peripherality in filtered graphs from dynamical financial correlations},
author={Pozzi, F. and Di Matteo, T. and Aste, T.},
journal={Advances in Complex Systems},
volume={11},
number={06},
pages={927--950},
year={2008},
publisher={World Scientific Publishing Company}
}
@book{aitchison1957lognormal,
title={The Lognormal Distribution: With Special Reference to Its Uses in Economics},
author={Aitchison, J. and Brown, J.A.C.},
lccn={a58001106},
series={Cambridge. University. Dept. of Applied Economics. Monographs, 5},
year={1957},
publisher={University Press}
}
@book{granger1992using,
title={Using the Mutual Information Coefficient to Identify Lags in Non-linear Models},
author={Granger, C.W.J. and Lin, J.L.},
series={Discussion paper: Jingji-Yanjiusuo},
year={1992},
publisher={Institute of Economics, Academia Sinica}
}
@inproceedings{pozzi2008dynamical,
title={Dynamical correlations in financial systems [6802-54]},
author={Pozzi, F. and Aste, T. and Rotundo, G. and Di Matteo, T.},
booktitle={PROCEEDINGS-SPIE THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING},
volume={6802},
pages={6802},
year={2008},
organization={International Society for Optical Engineering; 1999}
}
@article{918bf1f7d91649f59a1173af04bfc06a,
title = "Risk diversification: a study of persistence with a filtered correlation-network approach",
author = "N. Musmeci and T. {Di Matteo} and T. Aste",
year = "2015",
month = "3",
volume = "1",
pages = "1--22",
journal = "Journal of Network Theory in Finance",
number = "1",
}
@Article{Zheng2012,
author={Zheng, Z.
and Podobnik, B.
and Feng, L.
and Li, Baowen},
title={Changes in Cross-Correlations as an Indicator for Systemic Risk},
year={2012},
month={Nov},
day={26},
volume={2},
issn={2045-2322},
journal={Scientific reports},
publisher={Nature Publishing Group},
pages = {Article number 888}
}
@article{PhysRevE.88.012806,
title = {Evolution of correlation structure of industrial indices of U.S. equity markets},
author = {Buccheri, G. and Marmi, S. and Mantegna, R. N.},
journal = {Phys. Rev. E},
volume = {88},
issue = {1},
pages = {012806},
numpages = {7},
year = {2013},
month = {Jul},
publisher = {American Physical Society},
doi = {10.1103/PhysRevE.88.012806},
url = {http://link.aps.org/doi/10.1103/PhysRevE.88.012806}
}
@inproceedings{pozzi2009use,
title={The use of topological quantities to detect hierarchical properties in financial markets: the Financial sector in NYSE},
author={Pozzi, F. and Aste, T. and Shaw, W. and Di Matteo, T. and Mastorakis, N. E. and Croitoru, A. and Balas, V. E. and Son, E. and Mladenov, V.},
booktitle={WSEAS International Conference. Proceedings. Recent Advances in Computer Engineering},
number={10},
year={2009},
organization={WSEAS}
}
@article{song2012hierarchical,
title={Hierarchical information clustering by means of topologically embedded graphs},
author={Song, W.-M. and Di Matteo, T. and Aste, T.},
journal={PLoS One},
volume={7},
number={3},
pages={e31929},
year={2012},
publisher={Public Library of Science}
}
@article{Battiston06092016,
author = {Battiston, S. and Caldarelli, G. and May, R. M. and Roukny, T. and Stiglitz, J. E.},
title = {The price of complexity in financial networks},
volume = {113},
number = {36},
pages = {10031-10036},
year = {2016},
doi = {10.1073/pnas.1521573113},
URL = {http://www.pnas.org/content/113/36/10031.abstract},
eprint = {http://www.pnas.org/content/113/36/10031.full.pdf},
journal = {Proceedings of the National Academy of Sciences}
}
@Manual{R2015,
title = {R: A Language and Environment for Statistical Computing},
author = {{R Core Team}},
organization = {R Foundation for Statistical Computing},
address = {Vienna, Austria},
year = {2014},
url = {http://www.R-project.org/},
}
@article{citeulike:1447442,
author = {Hlavackovaschindler, K. and Palus, M. and Vejmelka, M. and Bhattacharya, J.},
doi = {10.1016/j.physrep.2006.12.004},
issn = {03701573},
journal = {Physics Reports},
month = mar,
number = {1},
pages = {1--46},
title = {Causality detection based on information-theoretic approaches in time series analysis},
url = {http://dx.doi.org/10.1016/j.physrep.2006.12.004},
volume = {441},
year = {2007}
}
@article{Baghli2006380,
title = "A model-free characterization of causality ",
journal = "Economics Letters ",
volume = "91",
number = "3",
pages = "380 - 388",
year = "2006",
note = "",
issn = "0165-1765",
doi = "http://dx.doi.org/10.1016/j.econlet.2005.12.016",
url = "http://www.sciencedirect.com/science/article/pii/S0165176505004234",
author = "Mustapha Baghli",
keywords = "Causality in information",
keywords = "Information-theoretic statistics",
keywords = "Nonlinearity",
keywords = "Fast double bootstrap test "
}
@article{Barberis1998307,
title = "A model of investor sentiment ",
journal = "Journal of Financial Economics ",
volume = "49",
number = "3",
pages = "307 - 343",
year = "1998",
note = "",
issn = "0304-405X",
doi = "http://dx.doi.org/10.1016/S0304-405X(98)00027-0",
url = "http://www.sciencedirect.com/science/article/pii/S0304405X98000270",
author = "Nicholas Barberis and Andrei Shleifer and Robert Vishny",
keywords = "Investor sentiment",
keywords = "Underreaction",
keywords = "Overreaction "
}
@article{lizier2010differentiating,
title={Differentiating information transfer and causal effect},
author={Lizier, Joseph T. and Prokopenko, Mikhail},
journal={The European Physical Journal B},
volume={73},
number={4},
pages={605--615},
year={2010},
publisher={Springer}
}
@article{PhysRevLett.85.461,
title = {Measuring Information Transfer},
author = {Schreiber, Thomas},
journal = {Phys. Rev. Lett.},
volume = {85},
issue = {2},
pages = {461--464},
numpages = {0},
year = {2000},
month = {Jul},
publisher = {American Physical Society},
doi = {10.1103/PhysRevLett.85.461},
url = {http://link.aps.org/doi/10.1103/PhysRevLett.85.461}
}
@article{Huang01032015,
author = {Huang, Dashan and Jiang, Fuwei and Tu, Jun and Zhou, Guofu},
title = {Investor Sentiment Aligned: A Powerful Predictor of Stock Returns},
volume = {28},
number = {3},
pages = {791-837},
year = {2015},
doi = {10.1093/rfs/hhu080},
journal = {Review of Financial Studies}
}
@inproceedings{Sehgal:2007:SSP:1335998.1336036,
author = {Sehgal, Vivek and Song, Charles},
title = {SOPS: Stock Prediction Using Web Sentiment},
booktitle = {Proceedings of the Seventh IEEE International Conference on Data Mining Workshops},
series = {ICDMW '07},
year = {2007},
isbn = {0-7695-3033-8},
pages = {21--26},
numpages = {6},
url = {http://dx.doi.org/10.1109/ICDMW.2007.97},
doi = {10.1109/ICDMW.2007.97},
acmid = {1336036},
publisher = {IEEE Computer Society},
address = {Washington, DC, USA},
}
@INPROCEEDINGS{Zhang_tradingstrategies,
author = {Wenbin Zhang and Steven Skiena},
title = {Trading strategies to exploit blog and news sentiment},
booktitle = {In Fourth Int. Conf. on Weblogs and Social Media (ICWSM), 2010. – 186},
year = {2010}
}
@article{wrap54525,
volume = {Volume 3},
month = {May},
author = {H. S. Moat and C. Curme and A. Avakian and D. Y. Kenett and H. E. Stanley and T. Preis},
title = {Quantifying wikipedia usage patterns before stock market moves},
publisher = {Nature Publishing Group},
journal = {Scientific Reports},
pages = {Article number 1801},
year = {2013}
}
@article {JOFI:JOFI1493,
author = {FANG, LILY and PERESS, JOEL},
title = {Media Coverage and the Cross-section of Stock Returns},
journal = {The Journal of Finance},
volume = {64},
number = {5},
publisher = {Blackwell Publishing Inc},
issn = {1540-6261},
doi = {10.1111/j.1540-6261.2009.01493.x},
pages = {2023--2052},
year = {2009},
}
@article{doi:10.1080/14697688.2015.1039865,
author = {Germ\'{a}n G. Creamer},
title = {Can a corporate network and news sentiment improve portfolio optimization using the Black–Litterman model?},
journal = {Quantitative Finance},
volume = {15},
number = {8},
pages = {1405-1416},
year = {2015},
doi = {10.1080/14697688.2015.1039865},
URL = {
http://dx.doi.org/10.1080/14697688.2015.1039865
},
eprint = {
http://dx.doi.org/10.1080/14697688.2015.1039865
}
}
@article{Doukas:2009,
author = {John A. Doukas and Meng Li},
title = {Asymmetric Asset Price Reaction to News and Arbitrage Risk},
journal = {Review of Behavioural Finance},
volume = {1},
number = {1/2},
pages = {23-43},
year = {2009},
doi = {10.1108/19405979200900002}
}
@article{Antweiler+Frank:04a,
author = {Antweiler, Werner and Frank, Murray Z.},
journal = {Journal of Finance},
number = 3,
pages = {1259--1294},
title = {Is All That Talk Just Noise? {The} Information Content of Internet
Stock Message Boards},
volume = 59,
year = 2004
}
@article{mao2014quantifying,
title={Quantifying the effects of online bullishness on international financial markets},
author={Mao, H. and Counts, S. and Bollen, J.},
journal={European Central Bank Workshop on Using Big Data for Forecasting and Statistics, Frankfurt, Germany},
year={2014}
}
@incollection{Darbellay1998,
year={1998},
isbn={978-1-4612-7273-1},
booktitle={Signal Analysis and Prediction},
series={Applied and Numerical Harmonic Analysis},
editor={Prochazka, Ales and Uhlir, Jan and Rayner, P.W.J. and Kingsbury, N.G.},
doi={10.1007/978-1-4612-1768-8_18},
title={Predictability: An Information-Theoretic Perspective},
publisher={Birkhauser Boston},
author={Darbellay, GeorgesA.},
pages={249-262},
language={English}
}
@article{doi:10.1080/15427560.2017.1332061,
author = {Matthias W. Uhl},
title = {Emotions Matter: Sentiment and Momentum in Foreign Exchange},
journal = {Journal of Behavioral Finance},
volume = {18},
number = {3},
pages = {249-257},
year = {2017},
publisher = {Routledge},
doi = {10.1080/15427560.2017.1332061},
URL = {
https://doi.org/10.1080/15427560.2017.1332061
},
eprint = {
https://doi.org/10.1080/15427560.2017.1332061
}
}
@article{doi:10.1080/14697688.2016.1211797,
author = {Daniel Tsvetanov and Jerry Coakley and Neil Kellard},
title = {Is news related to GDP growth a risk factor for commodity futures returns?},
journal = {Quantitative Finance},
volume = {16},
number = {12},
pages = {1887-1899},
year = {2016},
publisher = {Routledge},
doi = {10.1080/14697688.2016.1211797},
URL = {
https://doi.org/10.1080/14697688.2016.1211797
},
eprint = {
https://doi.org/10.1080/14697688.2016.1211797
}
}
@ARTICLE{RePEc:eee:empfin:v:18:y:2011:i:2:p:321-340,
title = {When machines read the news: Using automated text analytics to quantify high frequency news-implied market reactions},
author = {Groß-Klußmann, Axel and Hautsch, Nikolaus},
year = {2011},
journal = {Journal of Empirical Finance},
volume = {18},
number = {2},
pages = {321-340},
abstract = {We examine high-frequency market reactions to an intraday stock-specific news flow. Using unique pre-processed data from an automated news analytics tool based on linguistic pattern recognition we exploit information on the indicated relevance, novelty and direction of company-specific news. Employing a high-frequency VAR model based on 20 s data of a cross-section of stocks traded at the London Stock Exchange we find distinct responses in returns, volatility, trading volumes and bid-ask spreads due to news arrivals. We show that a classification of news according to indicated relevance is crucial to filter out noise and to identify significant effects. Moreover, sentiment indicators have predictability for future price trends though the profitability of news-implied trading is deteriorated by increased bid-ask spreads.},
keywords = {Firm-specific news News sentiment High-frequency data Volatility Liquidity Abnormal returns},
url = {https://EconPapers.repec.org/RePEc:eee:empfin:v:18:y:2011:i:2:p:321-340}
}
@article{doi:10.1111/j.1540-6261.2009.01493.x,
author = {FANG, LILY and PERESS, JOEL},
title = {Media Coverage and the Cross-section of Stock Returns},
journal = {The Journal of Finance},
volume = {64},
number = {5},
pages = {2023-2052},
doi = {10.1111/j.1540-6261.2009.01493.x},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.2009.01493.x},
eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1540-6261.2009.01493.x},
abstract = {ABSTRACT By reaching a broad population of investors, mass media can alleviate informational frictions and affect security pricing even if it does not supply genuine news. We investigate this hypothesis by studying the cross-sectional relation between media coverage and expected stock returns. We find that stocks with no media coverage earn higher returns than stocks with high media coverage even after controlling for well-known risk factors. These results are more pronounced among small stocks and stocks with high individual ownership, low analyst following, and high idiosyncratic volatility. Our findings suggest that the breadth of information dissemination affects stock returns.}
}
@article{Vicente:2011,
year={2011},
issn={0929-5313},
journal={Journal of Computational Neuroscience},
volume={30},
number={1},
doi={10.1007/s10827-010-0262-3},
title={Transfer entropy—a model-free measure of effective connectivity for the neurosciences},
url={http://dx.doi.org/10.1007/s10827-010-0262-3},
publisher={Springer US},
author={Vicente, Raul and Wibral, Michael and Lindner, Michael and Pipa, Gordon},
pages={45-67},
language={English}
}
@article{PhysRevLett.103.238701,
title = {Granger Causality and Transfer Entropy Are Equivalent for Gaussian Variables},
author = {Barnett, Lionel and Barrett, Adam B. and Seth, Anil K.},
journal = {Phys. Rev. Lett.},
volume = {103},
issue = {23},
pages = {238701},
numpages = {4},
year = {2009},
month = {Dec},
publisher = {American Physical Society},
doi = {10.1103/PhysRevLett.103.238701},
url = {http://link.aps.org/doi/10.1103/PhysRevLett.103.238701}
}
@incollection{Dzeroski:2014,
year={2014},
isbn={978-3-319-11811-6},
booktitle={Discovery Science},
volume={8777},
series={Lecture Notes in Computer Science},
editor={D\u{z}eroski, Sa\u{s}o and Panov, Pan\u{c}e and Kocev, Dragi and Todorovski, Ljup\u{c}o},
doi={10.1007/978-3-319-11812-3_2},
title={Big Data Analysis of StockTwits to Predict Sentiments in the Stock Market},
url={http://dx.doi.org/10.1007/978-3-319-11812-3_2},
publisher={Springer International Publishing},
keywords={Wrapper feature selection; Bayesian Networks; Stock microblogging sentiment},
author={Al Nasseri, Alya and Tucker, Allan and de Cesare, Sergio},
pages={13-24}
}
@Article {RePEc:dur:durham:2011_06,
title = {Media Sentiment and UK Stock Returns},
journal = {Working Papers},
year = {2011},
author = {Nicky J. Ferguson and Jie Michael Guo and Nicky Herbert Y.T. Lam and Dennis Philip},
publisher = {Durham University Business School}
}
@article{10.1371/journal.pone.0138441,
author = {Ranco, G. AND Aleksovski, D. AND Caldarelli, G. AND Gr\u{c}ar, M. AND Mozeti\u{c}, I.},
journal = {PLoS ONE},
publisher = {Public Library of Science},
title = {The Effects of \uppercase{t}witter Sentiment on Stock Price Returns},
year = {2015},
month = {09},
volume = {10},
url = {http://dx.doi.org/10.1371\%2Fjournal.pone.0138441},
pages = {e0138441},
number = {9},
doi = {10.1371/journal.pone.0138441}
}
@Article{ICWSM101513,
author = {Eric Gilbert and Karrie Karahalios},
title = {Widespread Worry and the Stock Market},
conference = {International AAAI Conference on Web and Social Media},
year = {2010},
pages = {58--65},
url = {https://www.aaai.org/ocs/index.php/ICWSM/ICWSM10/paper/view/1513/1833}
}
@incollection{Olaniyan:2015,
year={2015},
isbn={978-3-319-17090-9},
booktitle={Statistical Learning and Data Sciences},
volume={9047},
series={Lecture Notes in Computer Science},
editor={Gammerman, Alexander and Vovk, Vladimir and Papadopoulos, Harris},
doi={10.1007/978-3-319-17091-6_15},
title={Social Web-Based Anxiety Index's Predictive Information on S\&P 500 Revisited},
url={http://dx.doi.org/10.1007/978-3-319-17091-6\_15},
publisher={Springer International Publishing},
author={Olaniyan, Rapheal and Stamate, Daniel and Logofatu, Doina},
pages={203-213},
language={English}
}
@article{DBLP:journals/eswa/NasseriTC15,
author = {Alya Al Nasseri and
Allan Tucker and
Sergio de Cesare},
title = {Quantifying StockTwits semantic terms' trading behavior in financial
markets: An effective application of decision tree algorithms},
journal = {Expert Syst. Appl.},
volume = {42},
number = {23},
pages = {9192--9210},
year = {2015},
url = {http://dx.doi.org/10.1016/j.eswa.2015.08.008},
doi = {10.1016/j.eswa.2015.08.008}
}
@Article {HestonRanjan:2014,
author = {Heston, Steven L. and Sinha, Nitish Ranjan},
title = {News versus Sentiment: Comparing Textual Processing Approaches for Predicting Stock Returns},
journal = {Robert H. Smith School Research Paper},
URL = {http://ssrn.com/abstract=2311310},
year = {2014}
}
@article{ENGELBERG2012260,
title = "How are shorts informed?: Short sellers, news, and information processing",
journal = "Journal of Financial Economics",
volume = "105",
number = "2",
pages = "260 - 278",
year = "2012",
issn = "0304-405X",
doi = "https://doi.org/10.1016/j.jfineco.2012.03.001",
url = "http://www.sciencedirect.com/science/article/pii/S0304405X12000384",
author = "Joseph E. Engelberg and Adam V. Reed and Matthew C. Ringgenberg",
keywords = "Asymmetric information, Manipulation, News media, Short sales"