forked from EleutherAI/lm-evaluation-harness
-
Notifications
You must be signed in to change notification settings - Fork 1
/
main.py
183 lines (146 loc) · 6.48 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import argparse
import json
import logging
import fnmatch
import os
import jsonargparse
import pandas as pd
import randomname as randomname
import wandb as wandb
from lm_eval import tasks, evaluator, utils
logging.getLogger("openai").setLevel(logging.WARNING)
def _is_json_task(task_name):
return task_name == "json" or task_name.startswith("json=")
class MultiChoice:
def __init__(self, choices):
self.choices = choices
# Simple wildcard support (linux filename patterns)
def __contains__(self, values):
for value in values.split(","):
if len(fnmatch.filter(self.choices, value)) == 0 and not _is_json_task(
value
):
return False
return True
def __iter__(self):
for choice in self.choices:
yield choice
def parse_args():
parser = jsonargparse.ArgumentParser()
parser.add_argument("--model", required=True)
parser.add_argument("--model_args", default="")
parser.add_argument("--tasks", default=None, choices=MultiChoice(tasks.ALL_TASKS))
parser.add_argument("--prompt_version_per_task", type=str, default=None)
parser.add_argument("--provide_description", action="store_true")
parser.add_argument("--num_fewshot", type=int, default=0)
parser.add_argument("--seed", type=int, default=42)
parser.add_argument("--fewshot_sampling", type=str, default="")
parser.add_argument("--batch_size", type=str, default=None)
parser.add_argument("--device", type=str, default=None)
parser.add_argument("--output_path", default=None)
parser.add_argument("--limit", type=float, default=None,
help="Limit the number of examples per task. "
"If <1, limit is a percentage of the total number of examples.")
parser.add_argument("--data_sampling", type=float, default=None)
parser.add_argument("--no_cache", action="store_true")
parser.add_argument("--decontamination_ngrams_path", default=None)
parser.add_argument("--description_dict_path", default=None)
parser.add_argument("--check_integrity", action="store_true")
parser.add_argument("--write_out", action="store_true", default=False)
parser.add_argument("--output_base_path", type=str, default=None)
parser.add_argument("--wandb_on", type=bool, default=False)
parser.add_argument('--config', action=jsonargparse.ActionConfigFile)
return parser.parse_args()
# Returns a list containing all values of the source_list that
# match at least one of the patterns
def pattern_match(patterns, source_list):
task_names = set()
for pattern in patterns:
if _is_json_task(pattern):
task_names.add(pattern)
for matching in fnmatch.filter(source_list, pattern):
task_names.add(matching)
return sorted(list(task_names))
def main():
args = parse_args()
assert not args.provide_description # not implemented
if args.limit:
print(
"WARNING: --limit SHOULD ONLY BE USED FOR TESTING. REAL METRICS SHOULD NOT BE COMPUTED USING LIMIT."
)
if args.tasks is None:
task_names = tasks.ALL_TASKS
else:
task_names = pattern_match(args.tasks.split(","), tasks.ALL_TASKS)
print(f"Selected Tasks: {task_names}")
description_dict = {}
if args.description_dict_path:
with open(args.description_dict_path, "r") as f:
description_dict = json.load(f)
if args.wandb_on:
wandb_mode = "online"
os.environ["WANDB__SERVICE_WAIT"] = "300"
if not args.write_out:
print("Wandb can only save task output, when write out is true. Therefore write out is set to true")
args.write_out = True
else:
wandb_mode = "disabled"
tasks_string = "TASK_" + "-".join(task_names)
model_args_dict = utils.simple_parse_args_string(args.model_args)
model_id = model_args_dict["pretrained"].replace("/", "-")
model_string = f"MODEL_{model_id}"
few_shot_string = f"{args.num_fewshot}-SHOT"
args.output_base_path = os.path.join(args.output_base_path, model_id)
if args.num_fewshot > 0:
few_shot_string += f"-sampling-{args.fewshot_sampling}"
seed_string = f"seed-{args.seed}"
prompt_version_string = f"prompt-version-{args.prompt_version_per_task}"
wandb_run_name = randomname.get_name() + '_' + '_'.join(
[model_string, few_shot_string, seed_string, prompt_version_string])
wandb_run_group_name = f"llm_leaderboard_{tasks_string}_group"
wandb.init(project="llm_leaderboard", entity="background-tool", config=vars(args), name=wandb_run_name,
mode=wandb_mode, group=wandb_run_group_name)
results = evaluator.simple_evaluate(
model=args.model,
model_id=model_args_dict["pretrained"],
model_args=args.model_args,
tasks=task_names,
prompt_version_per_task=args.prompt_version_per_task,
num_fewshot=args.num_fewshot,
batch_size=args.batch_size,
device=args.device,
no_cache=args.no_cache,
limit=args.limit,
description_dict=description_dict,
decontamination_ngrams_path=args.decontamination_ngrams_path,
check_integrity=args.check_integrity,
write_out=args.write_out,
output_base_path=args.output_base_path,
seed=args.seed,
fewshot_sampling=args.fewshot_sampling
)
results_dump = {"results ": results["results"], "write_out_info": results["write_out_info"]}
dumped = json.dumps(results_dump, indent=2)
if args.output_path:
os.makedirs(os.path.dirname(args.output_path), exist_ok=True)
with open(args.output_path, "w") as f:
f.write(dumped)
print(
f"{args.model} ({args.model_args}), limit: {args.limit}, provide_description: {args.provide_description}, "
f"num_fewshot: {args.num_fewshot}, batch_size: {args.batch_size}"
)
if args.wandb_on:
wandb.log(results["results"])
write_out_info = results["write_out_info"]
plot_info = results["plot_info"]
wandb.Table.MAX_ARTIFACTS_ROWS = 600000
for task_name, task_output in write_out_info.items():
df = pd.DataFrame.from_dict(task_output)
task_table = wandb.Table(dataframe=df)
table_name = task_name + "_output_table"
wandb.log({table_name: task_table})
for task_name, plot_output in plot_info.items():
wandb.log(plot_output)
print(evaluator.make_table(results))
if __name__ == "__main__":
main()