Skip to content

Latest commit

 

History

History
278 lines (239 loc) · 17.4 KB

java.md

File metadata and controls

278 lines (239 loc) · 17.4 KB

JVM内存

内存区域

  • 运行时数据区域 + 直接内存(堆外内存)

image

  • 虚拟机栈

image

image

image

  • 本地方法栈

image

比如hashCode()方法,就是非java语言实现的,和虚拟机栈类似,在hotspot虚拟机是不区分虚拟机栈和本地方法栈的(合二为一了,JVM只是规范,具体的实现不同)
  • 程序计数器 注意,记录的是虚拟机栈的,本地方法栈的不记录

  • 方法区 类加载的时候,class、静态变量、static块等都会放在方法区

常量池

JVM对象的分配

  • 对象的内存布局

image

  • 对象的创建过程

image

JVM垃圾回收

  • 对象存活判定 gcRoots不止这4种(比如还有class对象等),常见的就是这4种

image

* class对象回收的条件

image

  • 引用 虚引用例子

image

image

  • 对象的分配策略

image

  • JIT即时编译和对象逃逸分析 所以并不是所有的对象都在堆上分配(几乎所有的对象都在堆上分配)

image

  • 垃圾回收

image

垃圾回收算法
  • 复制算法:新生代适合,新生代大部分都是垃圾

image

* 优化版的复制算法:垃圾占90%,不过有的垃圾回收器是动态调整各区域大小的(比如Parallel Scavenge回收器) 空间利用率只有一半,因此引入了s0和s1去(from和to),Eden:from:to = 8:1:1,空间利用率为90%。对象在eden区中分配,存活对象会去交换区中的一个

image

  • 标记清除算法 :老年代适合,老年代大部分不是垃圾

image

  • 标记整理算法:老年代适合,老年代大部分不是垃圾; 先标记,在整理,在清除:整理完了可以一下子整批清除(所以不能先清除在整理)

image

垃圾回收器
  • 常见的垃圾回收器

image

  • CMS垃圾回收器:以最短的暂停时间(STW)为优先的

image

image

HashMap

(jdk1.8HashMap)[https://tech.meituan.com/2016/06/24/java-hashmap.html]

重要结构、字段

  • Node
static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;    //用来定位数组索引位置
        final K key;
        V value;
        Node<K,V> next;   //链表的下一个node

        Node(int hash, K key, V value, Node<K,V> next) { ... }
        public final K getKey(){ ... }
        public final V getValue() { ... }
        public final String toString() { ... }
        public final int hashCode() { ... }
        public final V setValue(V newValue) { ... }
        public final boolean equals(Object o) { ... }
}
  • transient Node<K,V>[] table;
  • int threshold; // 所能容纳的key-value对极限
  • final float loadFactor; // 负载因子
  • transient int modCount;
  • transient int size;

要点

  • HashMap就是使用哈希表来存储的。哈希表为解决冲突,可以采用开放地址法和链地址法等来解决问题,Java中HashMap采用了链地址法。链地址法,简单来说,就是数组加链表的结合。在每个数组元素上都一个链表结构,当数据被Hash后,得到数组下标,把数据放在对应下标元素的链表上
  • Hash算法计算结果越分散均匀,Hash碰撞的概率就越小,map的存取效率就会越高。如果哈希桶数组很大,即使较差的Hash算法也会比较分散,如果哈希桶数组数组很小,即使好的Hash算法也会出现较多碰撞,所以就需要在空间成本和时间成本之间权衡,其实就是在根据实际情况确定哈希桶数组的大小,并在此基础上设计好的hash算法减少Hash碰撞。那么通过什么方式来控制map使得Hash碰撞的概率又小,哈希桶数组(Node[] table)占用空间又少呢?答案就是好的Hash算法和扩容机制
  • 首先,Node[] table的初始化长度length(默认值是16),Load factor为负载因子(默认值是0.75),threshold是HashMap所能容纳的最大数据量的Node(键值对)个数。threshold = length * Load factor。也就是说,在数组定义好长度之后,负载因子越大,所能容纳的键值对个数越多。

结合负载因子的定义公式可知,threshold就是在此Load factor和length(数组长度)对应下允许的最大元素数目,超过这个数目就重新resize(扩容),扩容后的HashMap容量是之前容量的两倍。默认的负载因子0.75是对空间和时间效率的一个平衡选择,建议大家不要修改,除非在时间和空间比较特殊的情况下,如果内存空间很多而又对时间效率要求很高,可以降低负载因子Load factor的值;相反,如果内存空间紧张而对时间效率要求不高,可以增加负载因子loadFactor的值,这个值可以大于1。 size这个字段其实很好理解,就是HashMap中实际存在的键值对数量。注意和table的长度length、容纳最大键值对数量threshold的区别。而modCount字段主要用来记录HashMap内部结构发生变化的次数,主要用于迭代的快速失败。强调一点,内部结构发生变化指的是结构发生变化,例如put新键值对,但是某个key对应的value值被覆盖不属于结构变化。 在HashMap中,哈希桶数组table的长度length大小必须为2的n次方(一定是合数),这是一种非常规的设计,常规的设计是把桶的大小设计为素数。相对来说素数导致冲突的概率要小于合数,具体证明可以参考这篇文章,Hashtable初始化桶大小为11,就是桶大小设计为素数的应用(Hashtable扩容后不能保证还是素数)。HashMap采用这种非常规设计,主要是为了在取模和扩容时做优化,同时为了减少冲突,HashMap定位哈希桶索引位置时,也加入了高位参与运算的过程。 这里存在一个问题,即使负载因子和Hash算法设计的再合理,也免不了会出现拉链过长的情况,一旦出现拉链过长,则会严重影响HashMap的性能。于是,在JDK1.8版本中,对数据结构做了进一步的优化,引入了红黑树。而当链表长度太长(默认超过8)时,链表就转换为红黑树,利用红黑树快速增删改查的特点提高HashMap的性能,其中会用到红黑树的插入、删除、查找等算法

hash计算方式

static final int hash(Object key) {   //jdk1.8 & jdk1.7
     int h;
     // h = key.hashCode() 为第一步 取hashCode值
     // h ^ (h >>> 16)  为第二步 高位参与运算
     return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}

static int indexFor(int h, int length) {  //jdk1.7的源码,jdk1.8没有这个方法,但是实现原理一样的
     return h & (length-1);  //第三步 取模运算
}
  • 为什么(h = key.hashCode()) ^ (h >>> 16)
  1. 由于和(length-1)运算,length 绝大多数情况小于2的16次方。所以始终是hashcode 的低16位(甚至更低)参与运算。要是高16位也参与运算,会让得到的下标更加散列。
  2. &和|都会使得结果偏向0或者1 ,并不是均匀的概念,所以用^

put方法(jdk1.8)

 public V put(K key, V value) {
     // 对key的hashCode()做hash
     return putVal(hash(key), key, value, false, true);
 }
 final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        // 步骤①:tab为空则创建
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        // 步骤②:计算index,桶为空的话那么直接创建桶 
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            // 步骤③:桶节点key存在,直接覆盖value
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            // 步骤④:判断该链为红黑树,那么插入红黑树
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            // 步骤⑤:该链为链表,那么添加元素,如果超出链表数量限制那么转红黑树
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        //链表长度大于8转换为红黑树进行处理
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                     // key已经存在直接覆盖value
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        // 步骤⑥:超过最大容量 就扩容
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
}

扩容(JDK1.7,鉴于JDK1.8融入了红黑树,较复杂,为了便于理解我们仍然使用JDK1.7的代码,好理解一些,本质上区别不大)

// newTable[i]的引用赋给了e.next,也就是使用了单链表的头插入方式,同一位置上新元素总会被放在链表的头部位置;这样先放在一个索引上的元素终会被放到Entry链的尾部(如果发生了hash冲突的话),这一点和Jdk1.8有区别,下文详解。在旧数组中同一条Entry链上的元素,通过重新计算索引位置后,有可能被放到了新数组的不同位置上。
1 void resize(int newCapacity) {   //传入新的容量
 2     Entry[] oldTable = table;    //引用扩容前的Entry数组
 3     int oldCapacity = oldTable.length;         
 4     if (oldCapacity == MAXIMUM_CAPACITY) {  //扩容前的数组大小如果已经达到最大(2^30)了
 5         threshold = Integer.MAX_VALUE; //修改阈值为int的最大值(2^31-1),这样以后就不会扩容了
 6         return;
 7     }
 8  
 9     Entry[] newTable = new Entry[newCapacity];  //初始化一个新的Entry数组
10     transfer(newTable);                         //!!将数据转移到新的Entry数组里
11     table = newTable;                           //HashMap的table属性引用新的Entry数组
12     threshold = (int)(newCapacity * loadFactor);//修改阈值
13 }

 1 void transfer(Entry[] newTable) {
 2     Entry[] src = table;                   //src引用了旧的Entry数组
 3     int newCapacity = newTable.length;
 4     for (int j = 0; j < src.length; j++) { //遍历旧的Entry数组
 5         Entry<K,V> e = src[j];             //取得旧Entry数组的每个元素
 6         if (e != null) {
 7             src[j] = null;//释放旧Entry数组的对象引用(for循环后,旧的Entry数组不再引用任何对象)
 8             do {
 9                 Entry<K,V> next = e.next;
10                 int i = indexFor(e.hash, newCapacity); //!!重新计算每个元素在数组中的位置
11                 e.next = newTable[i]; //标记[1]
12                 newTable[i] = e;      //将元素放在数组上
13                 e = next;             //访问下一个Entry链上的元素
14             } while (e != null);
15         }
16     }
17 }
  • JDK1.8做了哪些优化。 经过观测可以发现,我们使用的是2次幂的扩展(指长度扩为原来2倍),所以,元素的位置要么是在原位置,要么是在原位置再移动2次幂的位置。看下图可以明白这句话的意思,n为table的长度,图(a)表示扩容前的key1和key2两种key确定索引位置的示例,图(b)表示扩容后key1和key2两种key确定索引位置的示例,其中hash1是key1对应的哈希与高位运算结果 image 元素在重新计算hash之后,因为n变为2倍,那么n-1的mask范围在高位多1bit(红色),因此新的index就会发生这样的变化: image 因此,我们在扩充HashMap的时候,不需要像JDK1.7的实现那样重新计算hash,只需要看看原来的hash值新增的那个bit是1还是0就好了,是0的话索引没变,是1的话索引变成“原索引+oldCap”,可以看看下图为16扩充为32的resize示意图: image 这个设计确实非常的巧妙,既省去了重新计算hash值的时间,而且同时,由于新增的1bit是0还是1可以认为是随机的,因此resize的过程,均匀的把之前的冲突的节点分散到新的bucket了。这一块就是JDK1.8新增的优化点。有一点注意区别,JDK1.7中rehash的时候,旧链表迁移新链表的时候,如果在新表的数组索引位置相同,则链表元素会倒置,但是从上图可以看出,JDK1.8不会倒置

get方法(jdk1.8)

 public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
}
final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            if ((e = first.next) != null) {
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
}

Collections.synchronizedMap

public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
        return new SynchronizedMap<>(m);
}

方法都加了synchronized image

ConcurrentHashMap

(jdk1.7和jdk1.8)[https://juejin.cn/post/7064061605185028110]

  • 1.8采用cas和synchronized,put方法为例子:
image