-
Notifications
You must be signed in to change notification settings - Fork 0
/
attack_classification.py
808 lines (715 loc) · 35.4 KB
/
attack_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
import argparse
import os
import numpy as np
import pickle
import dataloader
from train_classifier import Model
from itertools import zip_longest
import criteria
from fuzzywuzzy import fuzz
import random
import csv
import gen
from nltk.stem import PorterStemmer
from gen import InputFeatures
import math
import sys
import spacy
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.modeling import BertModel, BertForMaskedLM
csv.field_size_limit(sys.maxsize)
#import tensorflow as tf
#To make tf 2.0 compatible with tf1.0 code, we disable the tf2.0 functionalities
#tf.compat.v1.disable_eager_execution()
import tensorflow_hub as hub
#import tensorflow as tf
#tf.disable_v2_behavior()
import tensorflow.compat.v1 as tf
tf.disable_v2_behavior()
from collections import defaultdict
import torch
import torch.nn as nn
from torch.utils.data import Dataset, DataLoader, SequentialSampler, TensorDataset
from BERT.tokenization import BertTokenizer
from BERT.modeling import BertForSequenceClassification, BertConfig
tf.compat.v1.disable_eager_execution()
class USE(object):
def __init__(self, cache_path):
super(USE, self).__init__()
os.environ['TFHUB_CACHE_DIR'] = cache_path
module_url = "https://tfhub.dev/google/universal-sentence-encoder-large/3"
self.embed = hub.Module(module_url)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
self.sess = tf.Session(config=config)
self.build_graph()
self.sess.run([tf.global_variables_initializer(), tf.tables_initializer()])
def build_graph(self):
self.sts_input1 = tf.placeholder(tf.string, shape=(None))
self.sts_input2 = tf.placeholder(tf.string, shape=(None))
sts_encode1 = tf.nn.l2_normalize(self.embed(self.sts_input1), axis=1)
sts_encode2 = tf.nn.l2_normalize(self.embed(self.sts_input2), axis=1)
self.cosine_similarities = tf.reduce_sum(tf.multiply(sts_encode1, sts_encode2), axis=1)
clip_cosine_similarities = tf.clip_by_value(self.cosine_similarities, -1.0, 1.0)
self.sim_scores = 1.0 - tf.acos(clip_cosine_similarities)
def semantic_sim(self, sents1, sents2):
scores = self.sess.run(
[self.sim_scores],
feed_dict={
self.sts_input1: sents1,
self.sts_input2: sents2,
})
return scores
def pick_most_similar_words_batch(src_words, sim_mat, idx2word, ret_count=10, threshold=0.):
"""
embeddings is a matrix with (d, vocab_size)
"""
sim_order = np.argsort(-sim_mat[src_words, :])[:, 1:1 + 100]
sim_words, sim_values = [], []
sim_dct = defaultdict(float)
for idx, src_word in enumerate(src_words):
sim_value = sim_mat[src_word][sim_order[idx]]
mask = sim_value >= threshold
sim_word, sim_value = sim_order[idx][mask], sim_value[mask]
sim_word = [idx2word[id] for id in sim_word]
sim_words.append(sim_word)
sim_values.append(sim_value)
sim_dct[(src_word,sim_word)] = sim_value
return sim_words, sim_values, sim_dct
class NLI_infer_BERT(nn.Module):
def __init__(self,
pretrained_dir,
nclasses,
max_seq_length=128,
batch_size=32):
super(NLI_infer_BERT, self).__init__()
self.model = BertForSequenceClassification.from_pretrained(pretrained_dir, num_labels=nclasses).cuda()
# construct dataset loader
self.dataset = NLIDataset_BERT(pretrained_dir, max_seq_length=max_seq_length, batch_size=batch_size)
def text_pred(self, text_data, batch_size=32):
# Switch the model to eval mode.
self.model.eval()
# transform text data into indices and create batches
dataloader = self.dataset.transform_text(text_data, batch_size=batch_size)
probs_all = []
# for input_ids, input_mask, segment_ids in tqdm(dataloader, desc="Evaluating"):
for input_ids, input_mask, segment_ids in dataloader:
input_ids = input_ids.cuda()
input_mask = input_mask.cuda()
segment_ids = segment_ids.cuda()
with torch.no_grad():
logits = self.model(input_ids, segment_ids, input_mask)
probs = nn.functional.softmax(logits, dim=-1)
probs_all.append(probs)
return torch.cat(probs_all, dim=0)
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
class NLIDataset_BERT(Dataset):
"""
Dataset class for Natural Language Inference datasets.
The class can be used to read preprocessed datasets where the premises,
hypotheses and labels have been transformed to unique integer indices
(this can be done with the 'preprocess_data' script in the 'scripts'
folder of this repository).
"""
def __init__(self,
pretrained_dir,
max_seq_length=128,
batch_size=32):
"""
Args:
data: A dictionary containing the preprocessed premises,
hypotheses and labels of some dataset.
padding_idx: An integer indicating the index being used for the
padding token in the preprocessed data. Defaults to 0.
max_premise_length: An integer indicating the maximum length
accepted for the sequences in the premises. If set to None,
the length of the longest premise in 'data' is used.
Defaults to None.
max_hypothesis_length: An integer indicating the maximum length
accepted for the sequences in the hypotheses. If set to None,
the length of the longest hypothesis in 'data' is used.
Defaults to None.
"""
self.tokenizer = BertTokenizer.from_pretrained(pretrained_dir, do_lower_case=True)
self.max_seq_length = max_seq_length
self.batch_size = batch_size
def convert_examples_to_features(self, examples, max_seq_length, tokenizer):
"""Loads a data file into a list of `InputBatch`s."""
features = []
for (ex_index, text_a) in enumerate(examples):
tokens_a = tokenizer.tokenize(' '.join(text_a))
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[:(max_seq_length - 2)]
tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
segment_ids = [0] * len(tokens)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
padding = [0] * (max_seq_length - len(input_ids))
input_ids += padding
input_mask += padding
segment_ids += padding
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
features.append(
InputFeatures(input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids))
return features
def transform_text(self, data, batch_size=32):
# transform data into seq of embeddings
eval_features = self.convert_examples_to_features(data,
self.max_seq_length, self.tokenizer)
all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids)
# Run prediction for full data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=batch_size)
return eval_dataloader
def calc_similarity(src_word,candidate_word):
src_word = np.asarray(src_word)
candidate_word = np.asarray(candidate_word)
src_word = src_word / np.linalg.norm(src_word)
candidate_word = candidate_word / np.linalg.norm(candidate_word)
return np.dot(src_word.T,candidate_word)
def calc_window(idx, half_sim_score_window, sim_score_window, len_text):
half_sim_score_window = (sim_score_window - 1) // 2
if idx >= half_sim_score_window and len_text - idx - 1 >= half_sim_score_window:
text_range_min = idx - half_sim_score_window
text_range_max = idx + half_sim_score_window + 1
elif idx < half_sim_score_window and len_text - idx - 1 >= half_sim_score_window:
text_range_min = 0
text_range_max = sim_score_window
elif idx >= half_sim_score_window and len_text - idx - 1 < half_sim_score_window:
text_range_min = len_text - sim_score_window
text_range_max = len_text
else:
text_range_min = 0
text_range_max = len_text
if text_range_min < 0:
text_range_min = 0
if text_range_max > len_text:
text_range_max = len_text
return text_range_min, text_range_max
def attack(fuzz_val,top_k_words,qrs,wts,sample_index,text_ls, true_label,
predictor, stop_words_set, word2idx, idx2word, cos_sim, word_embedding, sim_predictor=None,
import_score_threshold=-1., sim_score_threshold=0.5, sim_score_window=15, synonym_num=50,
batch_size=32):
rows=[]
nlp = spacy.load('en_core_web_sm')
masked_lang_model = BertForMaskedLM.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
changed_with=[]
doc = nlp(' '.join(text_ls))
text = []
for sent in doc.sents:
for token in sent:
text.append(token.text)
tok_text = []
for item in text:
ap = item.find("'")
if ap>=0:
tok_text.append(item[0:ap])
tok_text.append("'")
tok_text.append(item[ap+1:len(item)])
else:
tok_text.append(item)
text = []
for item in tok_text:
if len(item) > 0:
text.append(item)
text_ls = text[:]
# first check the prediction of the original text
orig_probs = predictor([text_ls]).squeeze()
orig_label = torch.argmax(orig_probs)
orig_prob = orig_probs.max()
if true_label != orig_label:
return '', 0, orig_label, orig_label, 0, [],[]
else:
len_text = len(text_ls)
if len_text < sim_score_window:
sim_score_threshold = 0.1 # shut down the similarity thresholding function
half_sim_score_window = (sim_score_window - 1) // 2
num_queries = 1
# get the pos and verb tense info
pos_ls = criteria.get_pos(text_ls)
# get importance score
leave_1_texts = [text_ls[:ii] + ['<oov>'] + text_ls[min(ii + 1, len_text):] for ii in range(len_text)]
leave_1_probs = predictor(leave_1_texts, batch_size=batch_size)
num_queries += len(leave_1_texts)
leave_1_probs_argmax = torch.argmax(leave_1_probs, dim=-1)
import_scores = (orig_prob - leave_1_probs[:, orig_label] + (leave_1_probs_argmax != orig_label).float() * (
leave_1_probs.max(dim=-1)[0] - torch.index_select(orig_probs, 0,
leave_1_probs_argmax))).data.cpu().numpy()
# get words to perturb ranked by importance score for word in words_perturb
words_perturb = []
for idx, score in sorted(enumerate(import_scores), key=lambda x: x[1], reverse=True):
try:
if score > import_score_threshold and text_ls[idx] not in stop_words_set and len(text_ls[idx]) > 2:
words_perturb.append((idx, score))
except:
print(idx, len(text_ls), import_scores.shape, text_ls, len(leave_1_texts))
#return '', 0, orig_label, orig_label, 0, [], words_perturb
# find synonyms
words_perturb_idx = [word2idx[word] for idx, word in words_perturb if word in word2idx]
#synonym_words, synonym_values, synonyms_dict = pick_most_similar_words_batch(words_perturb_idx, cos_sim, idx2word, synonym_num, -1.0)
# start replacing and attacking
text_prime = text_ls[:]
sims=[]
text_cache = text_prime[:]
num_changed = 0
for idx, score in words_perturb:
#print(text_ls[idx])
text_range_min, text_range_max = calc_window(idx, 3, 10, len_text)
sliced_text = text_prime[text_range_min:text_range_max]
#print(sliced_text)
new_index = idx - text_range_min
#print(sliced_text[new_index])
masked_idx = new_index
tokens, words, position = gen.convert_sentence_to_token(' '.join(sliced_text),1000,tokenizer)
assert len(words)==len(position)
len_tokens = len(tokens)
mask_position = position[masked_idx]
if isinstance(mask_position,list):
feature = gen.convert_whole_word_to_feature(tokens, mask_position, 1000, tokenizer)
else:
feature = gen.convert_token_to_feature(tokens, mask_position, 1000, tokenizer)
tokens_tensor = torch.tensor([feature.input_ids])
token_type_ids = torch.tensor([feature.input_type_ids])
attention_mask = torch.tensor([feature.input_mask])
tokens_tensor = tokens_tensor.to('cuda')
token_type_ids = token_type_ids.to('cuda')
attention_mask = attention_mask.to('cuda')
#new_probs = predictor(new_texts, batch_size=batch_size)
masked_lang_model.to('cuda')
masked_lang_model.eval()
ps = PorterStemmer()
with torch.no_grad():
prediction_scores = masked_lang_model(tokens_tensor, token_type_ids,attention_mask)
if isinstance(mask_position,list):
predicted_top = prediction_scores[0, mask_position[0]].topk(50)
else:
predicted_top = prediction_scores[0, mask_position].topk(50)
pre_tokens = tokenizer.convert_ids_to_tokens(predicted_top[1].cpu().numpy())
synonyms_initial = gen.substitution_generation(words[masked_idx], pre_tokens, predicted_top[0].cpu().numpy(), ps, 50)
new_texts = []
avg = []
synonyms = []
assert words[masked_idx] == text_ls[idx]
#print(synonyms)
for candidate_word in synonyms_initial:
if candidate_word in word_embedding and words[masked_idx] in word_embedding:
candidate_similarity = calc_similarity(word_embedding[words[masked_idx]],word_embedding[candidate_word])
avg.append(candidate_similarity)
#print(words[masked_idx], candidate_similarity, candidate_word)
if candidate_similarity >= 0.2:
new_texts.append(text_prime[:idx] + [candidate_word] + text_prime[min(idx + 1, len_text):])
synonyms.append(candidate_word)
else:
new_texts.append(text_prime[:idx] + [candidate_word] + text_prime[min(idx + 1, len_text):])
synonyms.append(candidate_word)
#print(len(new_texts))
if len(new_texts) == 0:
continue
text_range_min, text_range_max = calc_window(idx, half_sim_score_window, sim_score_window, len_text)
semantic_sims = \
sim_predictor.semantic_sim([' '.join(text_cache[text_range_min:text_range_max])] * len(new_texts),
list(map(lambda x: ' '.join(x[text_range_min:text_range_max]), new_texts)))[0]
sims.append(np.sum(semantic_sims)/len(semantic_sims))
new_probs_mask = np.ones(len(new_texts)) #(orig_label != torch.argmax(new_probs, dim=-1)).data.cpu().numpy()
# prevent bad synonyms
new_probs_mask *= (semantic_sims >= sim_score_threshold)
# prevent incompatible pos
synonyms_pos_ls = [criteria.get_pos(new_text[max(idx - 4, 0):idx + 5])[min(4, idx)]
if len(new_text) > 10 else criteria.get_pos(new_text)[idx] for new_text in new_texts]
pos_mask = np.array(criteria.pos_filter(pos_ls[idx], synonyms_pos_ls))
new_probs_mask *= pos_mask
new_vals=semantic_sims*new_probs_mask
index=[]
mini=2
for i in range(len(new_vals)):
if new_vals[i] > 0:
index.append((new_vals[i],i))
if len(index)==0:
continue
new_texts1=[new_texts[ind] for val,ind in index]
#print(len(new_texts1))
num_queries += len(new_texts1)
if num_queries > qrs:
return '', 0, orig_label, orig_label, 0, [],[]
new_probs = predictor(new_texts1, batch_size=batch_size)
if len(new_probs.shape) < 2:
new_probs = new_probs.unsqueeze(0)
pr=(orig_label != torch.argmax(new_probs, dim=-1)).data.cpu().numpy()
if np.sum(pr)>0 :
text_prime[idx] = synonyms[index[pr.argmax()][1]] #synonyms[(new_probs_mask * semantic_sims).argmax()]
num_changed += 1
break
else:
new_label_probs = new_probs[:, orig_label]
new_label_prob_min, new_label_prob_argmin = torch.min(new_label_probs, dim=-1)
if new_label_prob_min < orig_prob:
text_prime[idx] = synonyms[index[new_label_prob_argmin][1]]
num_changed += 1
text_cache = text_prime[:]
if fuzz.token_set_ratio(' '.join(text_ls) , ' '.join(text_cache)) < fuzz_val:
return ' '.join(text_prime), num_changed, orig_label, torch.argmax(predictor([text_prime])), num_queries, words_perturb,sims
return ' '.join(text_prime), num_changed, orig_label, torch.argmax(predictor([text_prime])), num_queries, words_perturb,sims
def random_attack(text_ls, true_label, predictor, perturb_ratio, stop_words_set, word2idx, idx2word, cos_sim,
sim_predictor=None, import_score_threshold=-1., sim_score_threshold=0.5, sim_score_window=15,
synonym_num=50, batch_size=32):
# first check the prediction of the original text
orig_probs = predictor([text_ls]).squeeze()
orig_label = torch.argmax(orig_probs)
orig_prob = orig_probs.max()
if true_label != orig_label:
return '', 0, orig_label, orig_label, 0
else:
len_text = len(text_ls)
if len_text < sim_score_window:
sim_score_threshold = 0.1 # shut down the similarity thresholding function
half_sim_score_window = (sim_score_window - 1) // 2
num_queries = 1
# get the pos and verb tense info
pos_ls = criteria.get_pos(text_ls)
# randomly get perturbed words
perturb_idxes = random.sample(range(len_text), int(len_text * perturb_ratio))
words_perturb = [(idx, text_ls[idx]) for idx in perturb_idxes]
# find synonyms
words_perturb_idx = [word2idx[word] for idx, word in words_perturb if word in word2idx]
synonym_words, _ = pick_most_similar_words_batch(words_perturb_idx, cos_sim, idx2word, synonym_num, 0.5)
synonyms_all = []
for idx, word in words_perturb:
if word in word2idx:
synonyms = synonym_words.pop(0)
if synonyms:
synonyms_all.append((idx, synonyms))
# start replacing and attacking
text_prime = text_ls[:]
text_cache = text_prime[:]
num_changed = 0
for idx, synonyms in synonyms_all:
new_texts = [text_prime[:idx] + [synonym] + text_prime[min(idx + 1, len_text):] for synonym in synonyms]
new_probs = predictor(new_texts, batch_size=batch_size)
# compute semantic similarity
if idx >= half_sim_score_window and len_text - idx - 1 >= half_sim_score_window:
text_range_min = idx - half_sim_score_window
text_range_max = idx + half_sim_score_window + 1
elif idx < half_sim_score_window and len_text - idx - 1 >= half_sim_score_window:
text_range_min = 0
text_range_max = sim_score_window
elif idx >= half_sim_score_window and len_text - idx - 1 < half_sim_score_window:
text_range_min = len_text - sim_score_window
text_range_max = len_text
else:
text_range_min = 0
text_range_max = len_text
semantic_sims = \
sim_predictor.semantic_sim([' '.join(text_cache[text_range_min:text_range_max])] * len(new_texts),
list(map(lambda x: ' '.join(x[text_range_min:text_range_max]), new_texts)))[0]
breakpoint()
num_queries += len(new_texts)
if len(new_probs.shape) < 2:
new_probs = new_probs.unsqueeze(0)
new_probs_mask = (orig_label != torch.argmax(new_probs, dim=-1)).data.cpu().numpy()
# prevent bad synonyms
new_probs_mask *= (semantic_sims >= sim_score_threshold)
# prevent incompatible pos
synonyms_pos_ls = [criteria.get_pos(new_text[max(idx - 4, 0):idx + 5])[min(4, idx)]
if len(new_text) > 10 else criteria.get_pos(new_text)[idx] for new_text in new_texts]
pos_mask = np.array(criteria.pos_filter(pos_ls[idx], synonyms_pos_ls))
new_probs_mask *= pos_mask
if np.sum(new_probs_mask) > 0:
text_prime[idx] = synonyms[(new_probs_mask * semantic_sims).argmax()]
num_changed += 1
break
else:
new_label_probs = new_probs[:, orig_label] + torch.from_numpy(
(semantic_sims < sim_score_threshold) + (1 - pos_mask).astype(float)).float().cuda()
new_label_prob_min, new_label_prob_argmin = torch.min(new_label_probs, dim=-1)
if new_label_prob_min < orig_prob:
text_prime[idx] = synonyms[new_label_prob_argmin]
num_changed += 1
text_cache = text_prime[:]
if fuzz.token_set_ratio(' '.join(text_ls),' '.join(text_cache)) < 80 :
return ' '.join(text_prime), num_changed, orig_label, torch.argmax(predictor([text_prime])), num_queries
return ' '.join(text_prime), num_changed, orig_label, torch.argmax(predictor([text_prime])), num_queries
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--dataset_path",
type=str,
required=True,
help="Which dataset to attack.")
parser.add_argument("--nclasses",
type=int,
default=2,
help="How many classes for classification.")
parser.add_argument("--target_model",
type=str,
required=True,
choices=['wordLSTM', 'bert', 'wordCNN'],
help="Target models for text classification: fasttext, charcnn, word level lstm "
"For NLI: InferSent, ESIM, bert-base-uncased")
parser.add_argument("--target_model_path",
type=str,
required=True,
help="pre-trained target model path")
parser.add_argument("--word_embeddings_path",
type=str,
default='',
help="path to the word embeddings for the target model")
parser.add_argument("--counter_fitting_embeddings_path",
type=str,
required=True,
help="path to the counter-fitting embeddings we used to find synonyms")
parser.add_argument("--counter_fitting_cos_sim_path",
type=str,
default='',
help="pre-compute the cosine similarity scores based on the counter-fitting embeddings")
parser.add_argument("--USE_cache_path",
type=str,
required=True,
help="Path to the USE encoder cache.")
parser.add_argument("--output_dir",
type=str,
default='adv_results',
help="The output directory where the attack results will be written.")
## Model hyperparameters
parser.add_argument("--sim_score_window",
default=15,
type=int,
help="Text length or token number to compute the semantic similarity score")
parser.add_argument("--import_score_threshold",
default=-1.,
type=float,
help="Required mininum importance score.")
parser.add_argument("--sim_score_threshold",
default=0.7,
type=float,
help="Required minimum semantic similarity score.")
parser.add_argument("--synonym_num",
default=5000,
type=int,
help="Number of synonyms to extract")
parser.add_argument("--batch_size",
default=32,
type=int,
help="Batch size to get prediction")
parser.add_argument("--data_size",
default=1000,
type=int,
help="Data size to create adversaries")
parser.add_argument("--perturb_ratio",
default=0.,
type=float,
help="Whether use random perturbation for ablation study")
parser.add_argument("--max_seq_length",
default=128,
type=int,
help="max sequence length for BERT target model")
parser.add_argument("--target_dataset",
default="imdb",
type=str,
help="Dataset Name")
parser.add_argument("--fuzz",
default=0,
type=int,
help="Word Pruning Value")
parser.add_argument("--top_k_words",
default=1000000,
type=int,
help="Top K Words")
parser.add_argument("--allowed_qrs",
default=1000000,
type=int,
help="Allowerd qrs")
args = parser.parse_args()
if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
print("Output directory ({}) already exists and is not empty.".format(args.output_dir))
else:
os.makedirs(args.output_dir, exist_ok=True)
# get data to attack
texts, labels = dataloader.read_corpus(args.dataset_path,csvf=False)
data = list(zip(texts, labels))
data = data[:args.data_size] # choose how many samples for adversary
print("Data import finished!")
# construct the model
print("Building Model...")
if args.target_model == 'wordLSTM':
model = Model(args.word_embeddings_path, nclasses=args.nclasses).cuda()
checkpoint = torch.load(args.target_model_path, map_location='cuda:0')
model.load_state_dict(checkpoint)
elif args.target_model == 'wordCNN':
model = Model(args.word_embeddings_path, nclasses=args.nclasses, hidden_size=150, cnn=True).cuda()
checkpoint = torch.load(args.target_model_path, map_location='cuda:0')
model.load_state_dict(checkpoint)
elif args.target_model == 'bert':
model = NLI_infer_BERT(args.target_model_path, nclasses=args.nclasses, max_seq_length=args.max_seq_length)
predictor = model.text_pred
print("Model built!")
# prepare synonym extractor
# build dictionary via the embedding file
idx2word = {}
word2idx = {}
sim_lis=[]
word_embedding = defaultdict(list)
print("Building vocab...")
with open(args.counter_fitting_embeddings_path, 'r') as ifile:
for line in ifile:
word = line.split()[0]
embedding = [float(num) for num in line.strip().split()[1:]]
if word not in idx2word:
idx2word[len(idx2word)] = word
word2idx[word] = len(idx2word) - 1
word_embedding[word] = embedding
print("Building cos sim matrix...")
if args.counter_fitting_cos_sim_path:
print('Load pre-computed cosine similarity matrix from {}'.format(args.counter_fitting_cos_sim_path))
with open(args.counter_fitting_cos_sim_path, "rb") as fp:
sim_lis = pickle.load(fp)
# load pre-computed cosine similarity matrix if provided
#print('Load pre-computed cosine similarity matrix from {}'.format(args.counter_fitting_cos_sim_path))
#cos_sim = np.load(args.counter_fitting_cos_sim_path)
else:
print('Start computing the cosine similarity matrix!')
embeddings = []
with open(args.counter_fitting_embeddings_path, 'r') as ifile:
for line in ifile:
embedding = [float(num) for num in line.strip().split()[1:]]
embeddings.append(embedding)
embeddings = np.array(embeddings)
print(embeddings.T.shape)
norm = np.linalg.norm(embeddings, axis=1, keepdims=True)
embeddings = np.asarray(embeddings / norm, "float64")
cos_sim = np.dot(embeddings, embeddings.T)
print("Cos sim import finished!")
# build the semantic similarity module
use = USE(args.USE_cache_path)
# start attacking
orig_failures = 0.
adv_failures = 0.
avg=0.
changed_rates = []
nums_queries = []
orig_texts = []
adv_texts = []
true_labels = []
new_labels = []
wrds=[]
s_queries=[]
f_queries=[]
sims_final=[]
success=[]
results=[]
fails=[]
scrs = []
log_file = "results_context/"+args.target_model+"/"+args.target_dataset+"/log.txt"
result_file = "results_context/"+args.target_model+"/"+args.target_dataset+"/results.csv"
wts_file = "tfidf_weights/"+"tfidf-"+args.target_dataset+".csv"
fail_file = "fails_tfidf/"+args.target_model+"/"+args.target_dataset+"/fails.csv"
stop_words_set = criteria.get_stopwords()
print('Start attacking!')
for idx, (text, true_label) in enumerate(data):
#print(text)
#print(true_label)
if idx % 20 == 0:
print(str(idx)+" Samples Done")
print(len(success))
print(np.mean(changed_rates))
if args.perturb_ratio > 0.:
new_text, num_changed, orig_label, \
new_label, num_queries = random_attack(text, true_label, predictor,
args.perturb_ratio, stop_words_set,
word2idx, idx2word, cos_sim, sim_predictor=use,
sim_score_threshold=args.sim_score_threshold,
import_score_threshold=args.import_score_threshold,
sim_score_window=args.sim_score_window,
synonym_num=args.synonym_num,
batch_size=args.batch_size)
else:
new_text, num_changed, orig_label, \
new_label, num_queries,pwrds,perts = attack(args.fuzz,args.top_k_words,args.allowed_qrs,
wts_file,idx,text, true_label, predictor, stop_words_set,
word2idx, idx2word, sim_lis, word_embedding , sim_predictor=use,
sim_score_threshold=args.sim_score_threshold,
import_score_threshold=args.import_score_threshold,
sim_score_window=args.sim_score_window,
synonym_num=args.synonym_num,
batch_size=args.batch_size)
scrs.append(perts)
if true_label != orig_label:
orig_failures += 1
else:
nums_queries.append(num_queries)
if true_label != new_label:
adv_failures += 1
#f_queries.append(num_queries)
changed_rate = 1.0 * num_changed / len(text)
if true_label == orig_label and true_label != new_label:
temp=[]
s_queries.append(num_queries)
success.append(idx)
changed_rates.append(changed_rate)
orig_texts.append(' '.join(text))
adv_texts.append(new_text)
true_labels.append(true_label)
new_labels.append(new_label)
wrds.append(pwrds)
temp.append(idx)
temp.append(' '.join(text))
temp.append(new_text)
temp.append(num_queries)
temp.append(changed_rate * 100)
results.append(temp)
print("Attacked: "+str(idx))
if true_label == orig_label and true_label == new_label:
f_queries.append(num_queries)
temp1=[]
temp1.append(idx)
temp1.append(' '.join(text))
temp1.append(new_text)
temp1.append(num_queries)
fails.append(temp1)
message = 'For target model {} on dataset window size {} with WP val {} top words {} qrs {} : ' \
'original accuracy: {:.3f}%, adv accuracy: {:.3f}%, ' \
'avg changed rate: {:.3f}%, num of queries: {:.1f}\n'.format(args.target_model,
args.sim_score_window,
args.fuzz,
args.top_k_words,args.allowed_qrs,
(1-orig_failures/1000)*100,
(1-adv_failures/1000)*100,
np.mean(changed_rates)*100,
np.mean(nums_queries))
print(message)
log=open(log_file,'a')
log.write(message)
with open(result_file,'w') as csvfile:
csvwriter = csv.writer(csvfile)
csvwriter.writerows(results)
#with open('scores-mr.csv','w') as csvfile:
# csvwriter = csv.writer(csvfile)
# csvwriter.writerows(scrs)
# with open(fail_file,'w') as csvfile:
# csvwriter = csv.writer(csvfile)
# csvwriter.writerows(fails)
# writing the data rows
print(avg)
print(len(f_queries))
print(f_queries)
with open(os.path.join(args.output_dir, 'adversaries.txt'), 'w') as ofile:
for orig_text, adv_text, true_label, new_label in zip(orig_texts, adv_texts, true_labels, new_labels):
ofile.write('orig sent ({}):\t{}\nadv sent ({}):\t{}\n\n'.format(true_label, orig_text, new_label, adv_text))
if __name__ == "__main__":
main()