-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
57 lines (52 loc) · 2.39 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from scipy.spatial.transform import Rotation as R
import numpy as np
# from plyfile import PlyData, PlyElement
import scipy
from sklearn.metrics import pairwise_distances_chunked, pairwise_distances_argmin_min
def calculate_ADD(gt, perch_res,model_dir,search_object,f= None,IND= 0, ycb = False, dope = False):
# need to transfer to a matrix
r_gt = R.from_quat([gt[3], gt[4], gt[5], gt[6]])
r_gt = r_gt.as_matrix()
if not ycb:
camera_matrix = np.array([[0, 0, 1],
[-1, 0,0],
[0, -1,0]])
r_gt = np.matmul(r_gt, camera_matrix)
trans_gt = np.zeros((4,4))
trans_gt[:3,:3] = r_gt
if ycb:
trans_gt[:,3] = [gt[0],gt[1],gt[2],1]
else:
trans_gt[:,3] = [gt[0]/100,gt[1]/100,gt[2]/100,1]
r_p = R.from_quat([perch_res[3], perch_res[4], perch_res[5], perch_res[6]])
r_p = r_p.as_matrix()
trans_p = np.zeros((4,4))
trans_p[:3,:3] = r_p
trans_p[:,3] = [perch_res[0]/100,perch_res[1]/100,perch_res[2]/100,1]
if dope:
trans_p[:,3] = [perch_res[0]/100,perch_res[1]/100,gt[2],1]
#ADD and ADD-S are based on the point cloud of the obejct
cloud = np.loadtxt(model_dir+search_object+'/points.xyz')
cloud = np.hstack((cloud, np.ones((cloud.shape[0], 1))))
# print(cloud)
transformed_cloud_gt = np.matmul(trans_gt, np.transpose(cloud))
transformed_cloud_p = np.matmul(trans_p, np.transpose(cloud))
# print(trans_gt)
# print(trans_p)
# Mean of corresponding points
mean_dist = np.linalg.norm(transformed_cloud_gt-transformed_cloud_p, axis=0)
# print(mean_dist.shape)
mean_dist_add = np.sum(mean_dist)/cloud.shape[0]
print("Average pose distance - ADD (in m) : {}".format(mean_dist_add))
# Do ADD-S for symmetric objects or every object if true
transformed_cloud_gt = np.transpose(transformed_cloud_gt)
transformed_cloud_p = np.transpose(transformed_cloud_p)
# For below func matrix should be samples x features
pairwise_distances = pairwise_distances_argmin_min(
transformed_cloud_gt, transformed_cloud_p, metric='euclidean', metric_kwargs={'n_jobs':6}
)
# Mean of nearest points
mean_dist_add_s = np.mean(pairwise_distances[1])
print("Average pose distance - ADD-S (in m) : {}".format(mean_dist_add_s))
if f:
f.write(str(IND)+":"+ "{}".format(mean_dist_add)+","+ "{}".format(mean_dist_add_s)+"\n")