forked from NVIDIA/Megatron-LM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pretrain_retro.py
137 lines (109 loc) · 4.36 KB
/
pretrain_retro.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
"""Pretrain Retro."""
from functools import partial
import torch
from megatron import get_args, get_retro_args
from megatron import get_timers
from megatron import get_tokenizer
from megatron import print_rank_0
from megatron.core import tensor_parallel
from megatron.core.enums import ModelType
from megatron.core.datasets.blended_megatron_dataset_builder import BlendedMegatronDatasetBuilder
from megatron.core.datasets.gpt_dataset import GPTDataset
from megatron.training import pretrain
from megatron.utils import get_ltor_masks_and_position_ids
from tools.retro.query.retro_dataset import get_retro_datasets
from pretrain_gpt import (
loss_func,
model_provider,
core_gpt_dataset_config_from_args
)
def get_batch(data_iterator):
"""Generate a batch"""
args = get_args()
retro_args = get_retro_args()
tokenizer = get_tokenizer()
# Items and their type.
keys = ['text']
datatype = torch.int64
if args.retro_add_retriever:
keys += 'neighbor_tokens',
# Broadcast data.
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
data_b = tensor_parallel.broadcast_data(keys, data, datatype)
# Unpack.
tokens_ = data_b['text'].long()
labels = tokens_[:, 1:].contiguous()
tokens = tokens_[:, :-1].contiguous()
if args.retro_add_retriever:
# note: [bs * l * k, r]
# note: 2x == neighbor, continuation
neighbor_tokens = data_b['neighbor_tokens'] \
.view(-1, retro_args.retro_gpt_retrieved_length).long()
# Get the masks and postition ids.
attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
tokens,
tokenizer.eod,
args.reset_position_ids,
args.reset_attention_mask,
args.eod_mask_loss)
if args.retro_add_retriever:
_, _, neighbor_position_ids = get_ltor_masks_and_position_ids(
neighbor_tokens,
tokenizer.eod,
args.reset_position_ids,
args.reset_attention_mask,
args.eod_mask_loss)
neighbor_attention_mask = None
return tokens, labels, loss_mask, attention_mask, position_ids, \
neighbor_tokens, neighbor_attention_mask, neighbor_position_ids
else:
return tokens, labels, loss_mask, attention_mask, position_ids
def forward_step(data_iterator, model):
"""Forward step."""
args = get_args()
timers = get_timers()
# Get the batch.
timers('batch-generator').start()
if args.retro_add_retriever:
tokens, labels, loss_mask, attention_mask, position_ids, \
neighbor_tokens, neighbor_attention_mask, neighbor_position_ids = \
get_batch(data_iterator)
else:
tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
data_iterator)
neighbor_tokens, neighbor_attention_mask, neighbor_position_ids = \
None, None, None
timers('batch-generator').stop()
output_tensor = model(tokens, position_ids, attention_mask,
retriever_input_ids=neighbor_tokens,
retriever_position_ids=neighbor_position_ids,
retriever_attn_mask=neighbor_attention_mask,
labels=labels)
return output_tensor, partial(loss_func, loss_mask)
def train_valid_test_datasets_provider(train_val_test_num_samples):
"""Build train, valid, and test datasets."""
args = get_args()
if args.retro_add_retriever:
return get_retro_datasets()
else:
print_rank_0("> building train, validation, and test datasets for GPT ...")
train_ds, valid_ds, test_ds = BlendedMegatronDatasetBuilder(
GPTDataset,
train_val_test_num_samples,
core_gpt_dataset_config_from_args(args)
).build()
print_rank_0("> finished creating GPT datasets ...")
return train_ds, valid_ds, test_ds
if __name__ == "__main__":
# Temporary for transitiont to core datasets
train_valid_test_datasets_provider.is_distributed = True
pretrain(train_valid_test_datasets_provider,
model_provider,
ModelType.retro_decoder,
forward_step,
args_defaults={'tokenizer_type': 'GPT2BPETokenizer',
'retro_add_retriever': True})