forked from NB-Group/Intelligent-Classroom-System
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnb.py
38 lines (30 loc) · 1.17 KB
/
nb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import json
import requests
from PIL import Image, ImageDraw
import matplotlib.pyplot as plt
import os
# Run inference on an image
url = "https://api.ultralytics.com/v1/predict/vY89GpzxNSze7BxrYy72"
headers = {"x-api-key": "daa17fbe445f42dbab18a57970faa17ae0c0ea5947"}
data = {"size": 640, "confidence": 0.25, "iou": 0.45}
with open("nb.jpg", "rb") as f:
response = requests.post(url, headers=headers, data=data, files={"image": f})
# Check for successful response
response.raise_for_status()
data = response.json()
objects = data['data']
# 打开图片
image = Image.open('nb.jpg')
image_backups = image
draw = ImageDraw.Draw(image)
# 在图片上标注结果并切割图片
for i, obj in enumerate(objects):
box = obj['box']
cropped_image = image_backups.crop((box['x1'], box['y1'], box['x2'], box['y2']))
cropped_image.save(f'./img/cropped_{i}.jpg')
draw.rectangle([box['x1'], box['y1'], box['x2'], box['y2']], outline='red')
draw.text((box['x1'], box['y1'] - 10), obj['name'], fill='red')
# 显示图片
plt.imshow(image)
plt.show()
print("图片已经成功切割并保存到本地,同时在原图上标注了结果。")