-
Notifications
You must be signed in to change notification settings - Fork 232
/
serialization_littleendian.go
671 lines (555 loc) · 19.8 KB
/
serialization_littleendian.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
//go:build (386 && !appengine) || (amd64 && !appengine) || (arm && !appengine) || (arm64 && !appengine) || (ppc64le && !appengine) || (mipsle && !appengine) || (mips64le && !appengine) || (mips64p32le && !appengine) || (wasm && !appengine)
// +build 386,!appengine amd64,!appengine arm,!appengine arm64,!appengine ppc64le,!appengine mipsle,!appengine mips64le,!appengine mips64p32le,!appengine wasm,!appengine
package roaring
import (
"encoding/binary"
"errors"
"io"
"reflect"
"runtime"
"unsafe"
)
func (ac *arrayContainer) writeTo(stream io.Writer) (int, error) {
buf := uint16SliceAsByteSlice(ac.content)
return stream.Write(buf)
}
func (bc *bitmapContainer) writeTo(stream io.Writer) (int, error) {
if bc.cardinality <= arrayDefaultMaxSize {
return 0, errors.New("refusing to write bitmap container with cardinality of array container")
}
buf := uint64SliceAsByteSlice(bc.bitmap)
return stream.Write(buf)
}
func uint64SliceAsByteSlice(slice []uint64) []byte {
// make a new slice header
header := *(*reflect.SliceHeader)(unsafe.Pointer(&slice))
// update its capacity and length
header.Len *= 8
header.Cap *= 8
// instantiate result and use KeepAlive so data isn't unmapped.
result := *(*[]byte)(unsafe.Pointer(&header))
runtime.KeepAlive(&slice)
// return it
return result
}
func uint16SliceAsByteSlice(slice []uint16) []byte {
// make a new slice header
header := *(*reflect.SliceHeader)(unsafe.Pointer(&slice))
// update its capacity and length
header.Len *= 2
header.Cap *= 2
// instantiate result and use KeepAlive so data isn't unmapped.
result := *(*[]byte)(unsafe.Pointer(&header))
runtime.KeepAlive(&slice)
// return it
return result
}
func interval16SliceAsByteSlice(slice []interval16) []byte {
// make a new slice header
header := *(*reflect.SliceHeader)(unsafe.Pointer(&slice))
// update its capacity and length
header.Len *= 4
header.Cap *= 4
// instantiate result and use KeepAlive so data isn't unmapped.
result := *(*[]byte)(unsafe.Pointer(&header))
runtime.KeepAlive(&slice)
// return it
return result
}
func (bc *bitmapContainer) asLittleEndianByteSlice() []byte {
return uint64SliceAsByteSlice(bc.bitmap)
}
// Deserialization code follows
// //
// These methods (byteSliceAsUint16Slice,...) do not make copies,
// they are pointer-based (unsafe). The caller is responsible to
// ensure that the input slice does not get garbage collected, deleted
// or modified while you hold the returned slince.
// //
func byteSliceAsUint16Slice(slice []byte) (result []uint16) { // here we create a new slice holder
if len(slice)%2 != 0 {
panic("Slice size should be divisible by 2")
}
// reference: https://go101.org/article/unsafe.html
// make a new slice header
bHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
rHeader := (*reflect.SliceHeader)(unsafe.Pointer(&result))
// transfer the data from the given slice to a new variable (our result)
rHeader.Data = bHeader.Data
rHeader.Len = bHeader.Len / 2
rHeader.Cap = bHeader.Cap / 2
// instantiate result and use KeepAlive so data isn't unmapped.
runtime.KeepAlive(&slice) // it is still crucial, GC can free it)
// return result
return
}
func byteSliceAsUint64Slice(slice []byte) (result []uint64) {
if len(slice)%8 != 0 {
panic("Slice size should be divisible by 8")
}
// reference: https://go101.org/article/unsafe.html
// make a new slice header
bHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
rHeader := (*reflect.SliceHeader)(unsafe.Pointer(&result))
// transfer the data from the given slice to a new variable (our result)
rHeader.Data = bHeader.Data
rHeader.Len = bHeader.Len / 8
rHeader.Cap = bHeader.Cap / 8
// instantiate result and use KeepAlive so data isn't unmapped.
runtime.KeepAlive(&slice) // it is still crucial, GC can free it)
// return result
return
}
func byteSliceAsInterval16Slice(slice []byte) (result []interval16) {
if len(slice)%4 != 0 {
panic("Slice size should be divisible by 4")
}
// reference: https://go101.org/article/unsafe.html
// make a new slice header
bHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
rHeader := (*reflect.SliceHeader)(unsafe.Pointer(&result))
// transfer the data from the given slice to a new variable (our result)
rHeader.Data = bHeader.Data
rHeader.Len = bHeader.Len / 4
rHeader.Cap = bHeader.Cap / 4
// instantiate result and use KeepAlive so data isn't unmapped.
runtime.KeepAlive(&slice) // it is still crucial, GC can free it)
// return result
return
}
func byteSliceAsContainerSlice(slice []byte) (result []container) {
var c container
containerSize := int(unsafe.Sizeof(c))
if len(slice)%containerSize != 0 {
panic("Slice size should be divisible by unsafe.Sizeof(container)")
}
// reference: https://go101.org/article/unsafe.html
// make a new slice header
bHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
rHeader := (*reflect.SliceHeader)(unsafe.Pointer(&result))
// transfer the data from the given slice to a new variable (our result)
rHeader.Data = bHeader.Data
rHeader.Len = bHeader.Len / containerSize
rHeader.Cap = bHeader.Cap / containerSize
// instantiate result and use KeepAlive so data isn't unmapped.
runtime.KeepAlive(&slice) // it is still crucial, GC can free it)
// return result
return
}
func byteSliceAsBitsetSlice(slice []byte) (result []bitmapContainer) {
bitsetSize := int(unsafe.Sizeof(bitmapContainer{}))
if len(slice)%bitsetSize != 0 {
panic("Slice size should be divisible by unsafe.Sizeof(bitmapContainer)")
}
// reference: https://go101.org/article/unsafe.html
// make a new slice header
bHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
rHeader := (*reflect.SliceHeader)(unsafe.Pointer(&result))
// transfer the data from the given slice to a new variable (our result)
rHeader.Data = bHeader.Data
rHeader.Len = bHeader.Len / bitsetSize
rHeader.Cap = bHeader.Cap / bitsetSize
// instantiate result and use KeepAlive so data isn't unmapped.
runtime.KeepAlive(&slice) // it is still crucial, GC can free it)
// return result
return
}
func byteSliceAsArraySlice(slice []byte) (result []arrayContainer) {
arraySize := int(unsafe.Sizeof(arrayContainer{}))
if len(slice)%arraySize != 0 {
panic("Slice size should be divisible by unsafe.Sizeof(arrayContainer)")
}
// reference: https://go101.org/article/unsafe.html
// make a new slice header
bHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
rHeader := (*reflect.SliceHeader)(unsafe.Pointer(&result))
// transfer the data from the given slice to a new variable (our result)
rHeader.Data = bHeader.Data
rHeader.Len = bHeader.Len / arraySize
rHeader.Cap = bHeader.Cap / arraySize
// instantiate result and use KeepAlive so data isn't unmapped.
runtime.KeepAlive(&slice) // it is still crucial, GC can free it)
// return result
return
}
func byteSliceAsRun16Slice(slice []byte) (result []runContainer16) {
run16Size := int(unsafe.Sizeof(runContainer16{}))
if len(slice)%run16Size != 0 {
panic("Slice size should be divisible by unsafe.Sizeof(runContainer16)")
}
// reference: https://go101.org/article/unsafe.html
// make a new slice header
bHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
rHeader := (*reflect.SliceHeader)(unsafe.Pointer(&result))
// transfer the data from the given slice to a new variable (our result)
rHeader.Data = bHeader.Data
rHeader.Len = bHeader.Len / run16Size
rHeader.Cap = bHeader.Cap / run16Size
// instantiate result and use KeepAlive so data isn't unmapped.
runtime.KeepAlive(&slice) // it is still crucial, GC can free it)
// return result
return
}
func byteSliceAsBoolSlice(slice []byte) (result []bool) {
boolSize := int(unsafe.Sizeof(true))
if len(slice)%boolSize != 0 {
panic("Slice size should be divisible by unsafe.Sizeof(bool)")
}
// reference: https://go101.org/article/unsafe.html
// make a new slice header
bHeader := (*reflect.SliceHeader)(unsafe.Pointer(&slice))
rHeader := (*reflect.SliceHeader)(unsafe.Pointer(&result))
// transfer the data from the given slice to a new variable (our result)
rHeader.Data = bHeader.Data
rHeader.Len = bHeader.Len / boolSize
rHeader.Cap = bHeader.Cap / boolSize
// instantiate result and use KeepAlive so data isn't unmapped.
runtime.KeepAlive(&slice) // it is still crucial, GC can free it)
// return result
return
}
// FrozenView creates a static view of a serialized bitmap stored in buf.
// It uses CRoaring's frozen bitmap format.
//
// The format specification is available here:
// https://github.com/RoaringBitmap/CRoaring/blob/2c867e9f9c9e2a3a7032791f94c4c7ae3013f6e0/src/roaring.c#L2756-L2783
//
// The provided byte array (buf) is expected to be a constant.
// The function makes the best effort attempt not to copy data.
// Only little endian is supported. The function will err if it detects a big
// endian serialized file.
// You should take care not to modify buff as it will likely result in
// unexpected program behavior.
// If said buffer comes from a memory map, it's advisable to give it read
// only permissions, either at creation or by calling Mprotect from the
// golang.org/x/sys/unix package.
//
// Resulting bitmaps are effectively immutable in the following sense:
// a copy-on-write marker is used so that when you modify the resulting
// bitmap, copies of selected data (containers) are made.
// You should *not* change the copy-on-write status of the resulting
// bitmaps (SetCopyOnWrite).
//
// If buf becomes unavailable, then a bitmap created with
// FromBuffer would be effectively broken. Furthermore, any
// bitmap derived from this bitmap (e.g., via Or, And) might
// also be broken. Thus, before making buf unavailable, you should
// call CloneCopyOnWriteContainers on all such bitmaps.
func (rb *Bitmap) FrozenView(buf []byte) error {
return rb.highlowcontainer.frozenView(buf)
}
func (rb *Bitmap) MustFrozenView(buf []byte) error {
if err := rb.FrozenView(buf); err != nil {
return err
}
err := rb.Validate()
return err
}
/* Verbatim specification from CRoaring.
*
* FROZEN SERIALIZATION FORMAT DESCRIPTION
*
* -- (beginning must be aligned by 32 bytes) --
* <bitset_data> uint64_t[BITSET_CONTAINER_SIZE_IN_WORDS * num_bitset_containers]
* <run_data> rle16_t[total number of rle elements in all run containers]
* <array_data> uint16_t[total number of array elements in all array containers]
* <keys> uint16_t[num_containers]
* <counts> uint16_t[num_containers]
* <typecodes> uint8_t[num_containers]
* <header> uint32_t
*
* <header> is a 4-byte value which is a bit union of frozenCookie (15 bits)
* and the number of containers (17 bits).
*
* <counts> stores number of elements for every container.
* Its meaning depends on container type.
* For array and bitset containers, this value is the container cardinality minus one.
* For run container, it is the number of rle_t elements (n_runs).
*
* <bitset_data>,<array_data>,<run_data> are flat arrays of elements of
* all containers of respective type.
*
* <*_data> and <keys> are kept close together because they are not accessed
* during deserilization. This may reduce IO in case of large mmaped bitmaps.
* All members have their native alignments during deserilization except <header>,
* which is not guaranteed to be aligned by 4 bytes.
*/
const frozenCookie = 13766
var (
// ErrFrozenBitmapInvalidCookie is returned when the header does not contain the frozenCookie.
ErrFrozenBitmapInvalidCookie = errors.New("header does not contain the frozenCookie")
// ErrFrozenBitmapBigEndian is returned when the header is big endian.
ErrFrozenBitmapBigEndian = errors.New("loading big endian frozen bitmaps is not supported")
// ErrFrozenBitmapIncomplete is returned when the buffer is too small to contain a frozen bitmap.
ErrFrozenBitmapIncomplete = errors.New("input buffer too small to contain a frozen bitmap")
// ErrFrozenBitmapOverpopulated is returned when the number of containers is too large.
ErrFrozenBitmapOverpopulated = errors.New("too many containers")
// ErrFrozenBitmapUnexpectedData is returned when the buffer contains unexpected data.
ErrFrozenBitmapUnexpectedData = errors.New("spurious data in input")
// ErrFrozenBitmapInvalidTypecode is returned when the typecode is invalid.
ErrFrozenBitmapInvalidTypecode = errors.New("unrecognized typecode")
// ErrFrozenBitmapBufferTooSmall is returned when the buffer is too small.
ErrFrozenBitmapBufferTooSmall = errors.New("buffer too small")
)
func (ra *roaringArray) frozenView(buf []byte) error {
if len(buf) < 4 {
return ErrFrozenBitmapIncomplete
}
headerBE := binary.BigEndian.Uint32(buf[len(buf)-4:])
if headerBE&0x7fff == frozenCookie {
return ErrFrozenBitmapBigEndian
}
header := binary.LittleEndian.Uint32(buf[len(buf)-4:])
buf = buf[:len(buf)-4]
if header&0x7fff != frozenCookie {
return ErrFrozenBitmapInvalidCookie
}
nCont := int(header >> 15)
if nCont > (1 << 16) {
return ErrFrozenBitmapOverpopulated
}
// 1 byte per type, 2 bytes per key, 2 bytes per count.
if len(buf) < 5*nCont {
return ErrFrozenBitmapIncomplete
}
types := buf[len(buf)-nCont:]
buf = buf[:len(buf)-nCont]
counts := byteSliceAsUint16Slice(buf[len(buf)-2*nCont:])
buf = buf[:len(buf)-2*nCont]
keys := byteSliceAsUint16Slice(buf[len(buf)-2*nCont:])
buf = buf[:len(buf)-2*nCont]
nBitmap, nArray, nRun := 0, 0, 0
nArrayEl, nRunEl := 0, 0
for i, t := range types {
switch t {
case 1:
nBitmap++
case 2:
nArray++
nArrayEl += int(counts[i]) + 1
case 3:
nRun++
nRunEl += int(counts[i])
default:
return ErrFrozenBitmapInvalidTypecode
}
}
if len(buf) < (1<<13)*nBitmap+4*nRunEl+2*nArrayEl {
return ErrFrozenBitmapIncomplete
}
bitsetsArena := byteSliceAsUint64Slice(buf[:(1<<13)*nBitmap])
buf = buf[(1<<13)*nBitmap:]
runsArena := byteSliceAsInterval16Slice(buf[:4*nRunEl])
buf = buf[4*nRunEl:]
arraysArena := byteSliceAsUint16Slice(buf[:2*nArrayEl])
buf = buf[2*nArrayEl:]
if len(buf) != 0 {
return ErrFrozenBitmapUnexpectedData
}
var c container
containersSz := int(unsafe.Sizeof(c)) * nCont
bitsetsSz := int(unsafe.Sizeof(bitmapContainer{})) * nBitmap
arraysSz := int(unsafe.Sizeof(arrayContainer{})) * nArray
runsSz := int(unsafe.Sizeof(runContainer16{})) * nRun
needCOWSz := int(unsafe.Sizeof(true)) * nCont
bitmapArenaSz := containersSz + bitsetsSz + arraysSz + runsSz + needCOWSz
bitmapArena := make([]byte, bitmapArenaSz)
containers := byteSliceAsContainerSlice(bitmapArena[:containersSz])
bitmapArena = bitmapArena[containersSz:]
bitsets := byteSliceAsBitsetSlice(bitmapArena[:bitsetsSz])
bitmapArena = bitmapArena[bitsetsSz:]
arrays := byteSliceAsArraySlice(bitmapArena[:arraysSz])
bitmapArena = bitmapArena[arraysSz:]
runs := byteSliceAsRun16Slice(bitmapArena[:runsSz])
bitmapArena = bitmapArena[runsSz:]
needCOW := byteSliceAsBoolSlice(bitmapArena)
iBitset, iArray, iRun := 0, 0, 0
for i, t := range types {
needCOW[i] = true
switch t {
case 1:
containers[i] = &bitsets[iBitset]
bitsets[iBitset].cardinality = int(counts[i]) + 1
bitsets[iBitset].bitmap = bitsetsArena[:1024]
bitsetsArena = bitsetsArena[1024:]
iBitset++
case 2:
containers[i] = &arrays[iArray]
sz := int(counts[i]) + 1
arrays[iArray].content = arraysArena[:sz]
arraysArena = arraysArena[sz:]
iArray++
case 3:
containers[i] = &runs[iRun]
runs[iRun].iv = runsArena[:counts[i]]
runsArena = runsArena[counts[i]:]
iRun++
}
}
// Not consuming the full input is a bug.
if iBitset != nBitmap || len(bitsetsArena) != 0 ||
iArray != nArray || len(arraysArena) != 0 ||
iRun != nRun || len(runsArena) != 0 {
panic("we missed something")
}
ra.keys = keys
ra.containers = containers
ra.needCopyOnWrite = needCOW
ra.copyOnWrite = true
return nil
}
// GetFrozenSizeInBytes returns the size in bytes of the frozen bitmap.
func (rb *Bitmap) GetFrozenSizeInBytes() uint64 {
nBits, nArrayEl, nRunEl := uint64(0), uint64(0), uint64(0)
for _, c := range rb.highlowcontainer.containers {
switch v := c.(type) {
case *bitmapContainer:
nBits++
case *arrayContainer:
nArrayEl += uint64(len(v.content))
case *runContainer16:
nRunEl += uint64(len(v.iv))
}
}
return 4 + 5*uint64(len(rb.highlowcontainer.containers)) +
(nBits << 13) + 2*nArrayEl + 4*nRunEl
}
// Freeze serializes the bitmap in the CRoaring's frozen format.
func (rb *Bitmap) Freeze() ([]byte, error) {
sz := rb.GetFrozenSizeInBytes()
buf := make([]byte, sz)
_, err := rb.FreezeTo(buf)
return buf, err
}
// FreezeTo serializes the bitmap in the CRoaring's frozen format.
func (rb *Bitmap) FreezeTo(buf []byte) (int, error) {
containers := rb.highlowcontainer.containers
nCont := len(containers)
nBits, nArrayEl, nRunEl := 0, 0, 0
for _, c := range containers {
switch v := c.(type) {
case *bitmapContainer:
nBits++
case *arrayContainer:
nArrayEl += len(v.content)
case *runContainer16:
nRunEl += len(v.iv)
}
}
serialSize := 4 + 5*nCont + (1<<13)*nBits + 4*nRunEl + 2*nArrayEl
if len(buf) < serialSize {
return 0, ErrFrozenBitmapBufferTooSmall
}
bitsArena := byteSliceAsUint64Slice(buf[:(1<<13)*nBits])
buf = buf[(1<<13)*nBits:]
runsArena := byteSliceAsInterval16Slice(buf[:4*nRunEl])
buf = buf[4*nRunEl:]
arraysArena := byteSliceAsUint16Slice(buf[:2*nArrayEl])
buf = buf[2*nArrayEl:]
keys := byteSliceAsUint16Slice(buf[:2*nCont])
buf = buf[2*nCont:]
counts := byteSliceAsUint16Slice(buf[:2*nCont])
buf = buf[2*nCont:]
types := buf[:nCont]
buf = buf[nCont:]
header := uint32(frozenCookie | (nCont << 15))
binary.LittleEndian.PutUint32(buf[:4], header)
copy(keys, rb.highlowcontainer.keys[:])
for i, c := range containers {
switch v := c.(type) {
case *bitmapContainer:
copy(bitsArena, v.bitmap)
bitsArena = bitsArena[1024:]
counts[i] = uint16(v.cardinality - 1)
types[i] = 1
case *arrayContainer:
copy(arraysArena, v.content)
arraysArena = arraysArena[len(v.content):]
elems := len(v.content)
counts[i] = uint16(elems - 1)
types[i] = 2
case *runContainer16:
copy(runsArena, v.iv)
runs := len(v.iv)
runsArena = runsArena[runs:]
counts[i] = uint16(runs)
types[i] = 3
}
}
return serialSize, nil
}
// WriteFrozenTo serializes the bitmap in the CRoaring's frozen format.
func (rb *Bitmap) WriteFrozenTo(wr io.Writer) (int, error) {
// FIXME: this is a naive version that iterates 4 times through the
// containers and allocates 3*len(containers) bytes; it's quite likely
// it can be done more efficiently.
containers := rb.highlowcontainer.containers
written := 0
for _, c := range containers {
c, ok := c.(*bitmapContainer)
if !ok {
continue
}
n, err := wr.Write(uint64SliceAsByteSlice(c.bitmap))
written += n
if err != nil {
return written, err
}
}
for _, c := range containers {
c, ok := c.(*runContainer16)
if !ok {
continue
}
n, err := wr.Write(interval16SliceAsByteSlice(c.iv))
written += n
if err != nil {
return written, err
}
}
for _, c := range containers {
c, ok := c.(*arrayContainer)
if !ok {
continue
}
n, err := wr.Write(uint16SliceAsByteSlice(c.content))
written += n
if err != nil {
return written, err
}
}
n, err := wr.Write(uint16SliceAsByteSlice(rb.highlowcontainer.keys))
written += n
if err != nil {
return written, err
}
countTypeBuf := make([]byte, 3*len(containers))
counts := byteSliceAsUint16Slice(countTypeBuf[:2*len(containers)])
types := countTypeBuf[2*len(containers):]
for i, c := range containers {
switch c := c.(type) {
case *bitmapContainer:
counts[i] = uint16(c.cardinality - 1)
types[i] = 1
case *arrayContainer:
elems := len(c.content)
counts[i] = uint16(elems - 1)
types[i] = 2
case *runContainer16:
runs := len(c.iv)
counts[i] = uint16(runs)
types[i] = 3
}
}
n, err = wr.Write(countTypeBuf)
written += n
if err != nil {
return written, err
}
header := uint32(frozenCookie | (len(containers) << 15))
if err := binary.Write(wr, binary.LittleEndian, header); err != nil {
return written, err
}
written += 4
return written, nil
}