-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathgesture_hci.py
481 lines (392 loc) · 17.7 KB
/
gesture_hci.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
"""
Hand gesture recognition
==========================
This is main function for the project.
Source Code:
https://github.com/RobinCPC/CE264-Computer_Vision
Usage:
------
gesture_hci.py [<video source>] (default: 0)
Keys:
-----
ESC - exit
c - toggle mouse control (default: False)
t - toggle hand tracking (default: False)
s - toggle skin calibration (need debug)
"""
import cv2
import numpy as np
import math
import time
# for controlling mouse and keyboard
import pyautogui
import sys
# Fail-safe mode (prevent from ou of control)
pyautogui.FAILSAFE = True
pyautogui.PAUSE = 0.1 # pause each pyautogui function 0.1 sec
# Build fixed-length Queue
class FixedQueue:
"""
A container with First-In-First-Out (FIFO) queuing policy
But can only storage maximum number of items in container
"""
def __init__(self):
self.list = []
self.max_item = 5
self.n_maj = 4
def __str__(self):
"""Return list as string for printing"""
return str(self.list)
def push(self, item):
"""Enqueue the item into the queue, but check length before add in"""
if self.list.__len__() == self.max_item:
self.list.pop()
self.list.insert(0, item)
def pop(self):
"""Dequeue the earliest enqueued item still in the queue."""
return self.list.pop()
def major(self):
"""Return the number that shows often in list"""
maj = 0
count = 0
for i in xrange(5):
cur_cnt = self.list.count(i)
if cur_cnt > count:
maj = i
count = cur_cnt
return maj
def count(self, value):
"""Return how many times that value show up in the queue"""
return self.list.count(value)
def isEmpty(self):
"""Return true if the queue is empty"""
return len(self.list) == 0
# Dummy callback for trackbar
def nothing(x):
pass
# uncomment if want to do on-line skin calibration
cv2.namedWindow('YRB_calib')
cv2.createTrackbar('Ymin', 'YRB_calib', 54, 255, nothing)
cv2.createTrackbar('Ymax', 'YRB_calib', 143, 255, nothing)
cv2.createTrackbar('CRmin', 'YRB_calib', 131, 255, nothing)
cv2.createTrackbar('CRmax', 'YRB_calib', 157, 255, nothing)
cv2.createTrackbar('CBmin', 'YRB_calib', 110, 255, nothing)
cv2.createTrackbar('CBmax', 'YRB_calib', 155, 255, nothing)
# Main part of gesture_hci
class App(object):
def __init__(self, video_src):
self.cam = cv2.VideoCapture(video_src)
ret, self.frame = self.cam.read()
cv2.namedWindow('gesture_hci')
# set channel range of skin detection
self.mask_lower_yrb = np.array([44, 131, 80]) # [54, 131, 110]
self.mask_upper_yrb = np.array([163, 157, 155]) # [163, 157, 135]
# create trackbar for skin calibration
self.calib_switch = False
# create background subtractor
self.fgbg = cv2.BackgroundSubtractorMOG2(history=120, varThreshold=50, bShadowDetection=True)
# define dynamic ROI area
self.ROIx, self.ROIy = 200, 200
self.track_switch = False
# record previous positions of the centroid of ROI
self.preCX = None
self.preCY = None
# A queue to record last couple gesture command
self.last_cmds = FixedQueue()
# prepare some data for detecting single-finger gesture
self.fin1 = cv2.imread('./test_data/index1.jpg')
self.fin2 = cv2.imread('./test_data/index2.jpg')
self.fin3 = cv2.imread('./test_data/index3.jpg')
# switch to turn on mouse input control
self.cmd_switch = False
# count loop (frame), for debugging
self.n_frame = 0
# On-line Calibration for skin detection (bug, not stable)
def skin_calib(self, raw_yrb):
mask_skin = cv2.inRange(raw_yrb, self.mask_lower_yrb, self.mask_upper_yrb)
cal_skin = cv2.bitwise_and(raw_yrb, raw_yrb, mask=mask_skin)
cv2.imshow('YRB_calib', cal_skin)
k = cv2.waitKey(5) & 0xFF
if k == ord('s'):
self.calib_switch = False
cv2.destroyWindow('YRB_calib')
ymin = cv2.getTrackbarPos('Ymin', 'YRB_calib')
ymax = cv2.getTrackbarPos('Ymax', 'YRB_calib')
rmin = cv2.getTrackbarPos('CRmin', 'YRB_calib')
rmax = cv2.getTrackbarPos('CRmax', 'YRB_calib')
bmin = cv2.getTrackbarPos('CBmin', 'YRB_calib')
bmax = cv2.getTrackbarPos('CBmax', 'YRB_calib')
self.mask_lower_yrb = np.array([ymin, rmin, bmin])
self.mask_upper_yrb = np.array([ymax, rmax, bmax])
# Do skin detection with some filtering
def skin_detect(self, raw_yrb, img_src):
# use median blurring to remove signal noise in YCRCB domain
raw_yrb = cv2.medianBlur(raw_yrb, 5)
mask_skin = cv2.inRange(raw_yrb, self.mask_lower_yrb, self.mask_upper_yrb)
# morphological transform to remove unwanted part
kernel = np.ones((5, 5), np.uint8)
#mask_skin = cv2.morphologyEx(mask_skin, cv2.MORPH_OPEN, kernel)
mask_skin = cv2.dilate(mask_skin, kernel, iterations=2)
res_skin = cv2.bitwise_and(img_src, img_src, mask=mask_skin)
#res_skin_dn = cv2.fastNlMeansDenoisingColored(res_skin, None, 10, 10, 7,21)
return res_skin
# Do background subtraction with some filtering
def background_subtract(self, img_src):
fgmask = self.fgbg.apply(cv2.GaussianBlur(img_src, (25, 25), 0))
kernel = np.ones((5, 5), np.uint8)
fgmask = cv2.dilate(fgmask, kernel, iterations=2)
#fgmask = self.fgbg.apply(cv2.medianBlur(img_src, 11))
org_fg = cv2.bitwise_and(img_src, img_src, mask=fgmask)
return org_fg
# Update Position of ROI
def update_ROI(self, img_src):
# setting flexible ROI range
Rxmin,Rymin,Rxmax,Rymax = (0,)*4
if self.ROIx - 100 < 0:
Rxmin = 0
else:
Rxmin = self.ROIx - 100
if self.ROIx + 100 > img_src.shape[0]:
Rxmax = img_src.shape[0]
else:
Rxmax = self.ROIx + 100
if self.ROIy - 100 < 0:
Rymin = 0
else:
Rymin = self.ROIy - 100
if self.ROIy + 100 > img_src.shape[1]:
Rymax = img_src.shape[1]
else:
Rymax = self.ROIy + 100
return Rxmin, Rymin, Rxmax, Rymax
# Find contour and track hand inside ROI
def find_contour(self, img_src, Rxmin, Rymin, Rxmax, Rymax):
cv2.rectangle(img_src, (Rxmax, Rymax), (Rxmin, Rymin), (0, 255, 0), 0)
crop_res = img_src[Rymin: Rymax, Rxmin:Rxmax]
grey = cv2.cvtColor(crop_res, cv2.COLOR_BGR2GRAY)
_, thresh1 = cv2.threshold(grey, 127, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
cv2.imshow('Thresh', thresh1)
contours, hierchy = cv2.findContours(thresh1.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
# draw contour on threshold image
if len(contours) > 0:
cv2.drawContours(thresh1, contours, -1, (0, 255, 0), 3)
return contours, crop_res
# Check ConvexHull and Convexity Defects
def get_defects(self, cnt, drawing):
defects = None
hull = cv2.convexHull(cnt)
cv2.drawContours(drawing, [cnt], 0, (0, 255, 0), 0)
cv2.drawContours(drawing, [hull], 0, (0, 0, 255), 0)
hull = cv2.convexHull(cnt, returnPoints=False) # For finding defects
if hull.size > 2:
defects = cv2.convexityDefects(cnt, hull)
return defects
# Gesture Recognition
def gesture_recognize(self, cnt, defects, count_defects, crop_res):
# use angle between start, end, defect to recognize # of finger show up
if type(defects) is not None and cv2.contourArea(cnt) >= 5000:
for i in range(defects.shape[0]):
s, e, f, d = defects[i, 0]
start = tuple(cnt[s][0])
end = tuple(cnt[e][0])
far = tuple(cnt[f][0])
a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2)
b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2)
c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)
angle = math.acos((b**2 + c**2 - a**2)/(2*b*c)) * 180/math.pi
if angle <= 90:
count_defects += 1
cv2.circle(crop_res, far, 5, [0, 0, 255], -1)
cv2.line(crop_res, start, end, [0, 255, 0], 2)
## single fingertip check
if count_defects == 0 and cv2.contourArea(cnt) >= 5000:
count_defects = self.single_finger_check(cnt)
# return the result of gesture recognition
return count_defects
# Check if single-finger show up (OpenCV API using matchShape)
def single_finger_check(self, cnt):
# use single finger image to check current fame has single finger
grey_fin1 = cv2.cvtColor(self.fin1, cv2.COLOR_BGR2GRAY)
_, thresh_fin1 = cv2.threshold(grey_fin1, 127, 255, 0)
contour_fin1, hierarchy = cv2.findContours(thresh_fin1.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt1 = contour_fin1[0]
ret1 = cv2.matchShapes(cnt, cnt1, 1, 0)
grey_fin2 = cv2.cvtColor(self.fin2, cv2.COLOR_BGR2GRAY)
_, thresh_fin2 = cv2.threshold(grey_fin2, 127, 255, 0)
contour_fin2, hierarchy = cv2.findContours(thresh_fin2.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt2 = contour_fin2[0]
ret2 = cv2.matchShapes(cnt, cnt2, 1, 0)
grey_fin3 = cv2.cvtColor(self.fin3, cv2.COLOR_BGR2GRAY)
_, thresh_fin3 = cv2.threshold(grey_fin3, 127, 255, 0)
contour_fin3, hierarchy = cv2.findContours(thresh_fin3.copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt3 = contour_fin3[0]
ret3 = cv2.matchShapes(cnt, cnt3, 1, 0)
reta = (ret1 + ret2 + ret3)/3
if reta <= 0.3:
return 5 # set as one-finger module
else:
return 0 # not detect, still 0
# Use PyAutoGUI to control mouse event
def input_control(self, count_defects, img_src):
# update position difference with previous frame (for move mouse)
d_x, d_y = 0, 0
if self.preCX is not None:
d_x = self.ROIx - self.preCX
d_y = self.ROIy - self.preCY
# checking current command, and filter out unstable hand gesture
cur_cmd = 0
if self.cmd_switch:
if self.last_cmds.count(count_defects) >= self.last_cmds.n_maj:
cur_cmd = count_defects
#print 'major command is ', cur_cmd
else:
cur_cmd = 0 # self.last_cmds.major()
else:
cur_cmd = count_defects
# send mouse input event depend on hand gesture
if cur_cmd == 1:
str1 = '2, move mouse dx,dy = ' + str(d_x*3) + ', ' + str(d_y*3)
cv2.putText(img_src, str1, (50, 50), cv2.FONT_HERSHEY_TRIPLEX, 2, (0, 0, 255), 2)
if self.cmd_switch:
pyautogui.moveRel(d_x*3, d_y*3)
self.last_cmds.push(count_defects)
#pyautogui.mouseDown(button='left')
#pyautogui.moveRel(d_x, d_y)
#else:
# pyautogui.mouseUp(button='left')
elif cur_cmd == 2:
cv2.putText(img_src, '3 Left (rotate)', (50, 50), cv2.FONT_HERSHEY_TRIPLEX, 2, (0, 0, 255), 2)
if self.cmd_switch:
pyautogui.dragRel(d_x, d_y, button='left')
self.last_cmds.push(count_defects)
#pyautogui.scroll(d_y,pause=0.2)
elif cur_cmd == 3:
cv2.putText(img_src, '4 middle (zoom)', (50, 50), cv2.FONT_HERSHEY_TRIPLEX, 2, (0, 0, 255), 2)
if self.cmd_switch:
pyautogui.dragRel(d_x, d_y, button='middle')
self.last_cmds.push(count_defects)
elif cur_cmd == 4:
cv2.putText(img_src, '5 right (pan)', (50, 50), cv2.FONT_HERSHEY_TRIPLEX, 2, (0, 0, 255), 2)
if self.cmd_switch:
pyautogui.dragRel(d_x, d_y, button='right')
self.last_cmds.push(count_defects)
elif cur_cmd == 5:
cv2.putText(img_src, '1 fingertip show up', (50, 50), cv2.FONT_HERSHEY_TRIPLEX, 2, (0, 0, 255), 2)
if self.cmd_switch:
self.last_cmds.push(count_defects)
else:
cv2.putText(img_src, 'No finger detect!', (50, 50), cv2.FONT_HERSHEY_TRIPLEX, 2, (0, 0, 255), 2)
if self.cmd_switch:
self.last_cmds.push(count_defects) # no finger detect or wrong gesture
# testing pyautogui
def test_auto_gui(self):
if self.cmd_switch:
# Drag mouse to control some object on screen (such as google map at webpage)
distance = 100.
while distance > 0:
pyautogui.dragRel(distance, 0, duration=2, button='left') # move right
distance -= 25
pyautogui.dragRel(0, distance, duration=2, button='left') # move down
distance -= 25
pyautogui.dragRel(-distance, 0, duration=2, button='left') # move right
distance -= 25
pyautogui.dragRel(0, -distance, duration=2, button='left') # move down
distance -= 25
# scroll mouse wheel (zoom in and zoom out google map)
pyautogui.scroll(10, pause=1.)
pyautogui.scroll(-10, pause=1)
pyautogui.scroll(10, pause=1.)
pyautogui.scroll(-10, pause=1)
# message box
pyautogui.alert(text='pyautogui testing over, click ok to end', title='Alert', button='OK')
self.cmd_switch = not self.cmd_switch # turn off
# main function of the project (run all processes)
def run(self):
while self.cam.isOpened():
if self.n_frame == 0:
ini_time = time.time()
ret, self.frame = self.cam.read()
org_vis = self.frame.copy()
#org_vis = cv2.fastNlMeansDenoisingColored(self.frame, None, 10,10,7,21) # try to denoise but time comsuming
### Skin detect filter
yrb = cv2.cvtColor(self.frame, cv2.COLOR_BGR2YCR_CB)
res_skin = self.skin_detect(yrb, org_vis)
## check if want to do skin calibration
if self.calib_switch:
self.skin_calib(yrb)
### Background Subtraction
org_fg = self.background_subtract(org_vis)
### Find Contours and track hand inside ROI
Rxmin, Rymin, Rxmax, Rymax = self.update_ROI(org_fg)
contours, crop_res = self.find_contour(org_fg, Rxmin, Rymin, Rxmax, Rymax)
### Get Convexity Defects if Contour in ROI is bigger enough
drawing = np.zeros(crop_res.shape, np.uint8)
max_area = -1
ci = 0
if len(contours) > 0:
for i in range(len(contours)):
cnt = contours[i]
area = cv2.contourArea(cnt)
if area > max_area:
max_area = area
ci = i
cnt = contours[ci]
# use minimum rectangle to crop contour for faster gesture checking
x, y, w, h = cv2.boundingRect(cnt)
cv2.rectangle(crop_res, (x, y), (x+w, y+h), (0, 0, 255), 0)
# check if start to track hand
if self.track_switch:
M = cv2.moments(cnt)
if M['m00'] != 0:
self.ROIx = int(M['m10']/M['m00']) + Rxmin
self.ROIy = int(M['m01']/M['m00']) + Rymin - 30
else:
self.ROIx = 200
self.ROIy = 200
# debug draw a circle at center
M = cv2.moments(cnt)
if M['m00'] != 0:
cx = int(M['m10']/M['m00'])
cy = int(M['m01']/M['m00'])
cv2.circle(org_fg, (cx+Rxmin, cy+Rymin), 10, [0, 255, 255], -1)
### Check ConvexHull and Convexity Defects
defects = self.get_defects(cnt, drawing)
### Gesture Recognition
count_defects = 0
count_defects = self.gesture_recognize(cnt, defects, count_defects, crop_res)
### Input Control (Mouse Event)
self.input_control(count_defects, org_fg)
# update center position of ROI for next frame
self.preCX = self.ROIx
self.preCY = self.ROIy
### Display Image
#cv2.imshow('original_view', org_vis)
#cv2.imshow('YCR_CB', yrb)
#cv2.imshow('YRB_skin', res_skin)
#cv2.imshow('fgmask', fgmask)
cv2.imshow('gesture_hci', org_fg) # final result shows Here
all_img = np.hstack((drawing, crop_res))
cv2.imshow('Contours', all_img)
#self.test_auto_gui()
ch = cv2.waitKey(5) & 0xFF
if ch == 27:
break
elif ch == ord('c'):
self.cmd_switch = not self.cmd_switch
elif ch == ord('s'):
self.calib_switch = not self.calib_switch
elif ch == ord('t'):
self.track_switch = not self.track_switch
if self.n_frame == 3:
cur_time = time.time()
#print 'time for one loop:',(cur_time - ini_time)
self.n_frame = (self.n_frame + 1) % 4
cv2.destroyAllWindows()
if __name__ == '__main__':
# main function start here
try:
video_src = sys.argv[1]
except:
video_src = 0
print __doc__
App(video_src).run()