forked from MonoGame/MonoGame
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPlane.cs
311 lines (255 loc) · 10.3 KB
/
Plane.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
// MIT License - Copyright (C) The Mono.Xna Team
// This file is subject to the terms and conditions defined in
// file 'LICENSE.txt', which is part of this source code package.
using System;
using System.Diagnostics;
using System.Runtime.Serialization;
namespace Microsoft.Xna.Framework
{
internal class PlaneHelper
{
/// <summary>
/// Returns a value indicating what side (positive/negative) of a plane a point is
/// </summary>
/// <param name="point">The point to check with</param>
/// <param name="plane">The plane to check against</param>
/// <returns>Greater than zero if on the positive side, less than zero if on the negative size, 0 otherwise</returns>
public static float ClassifyPoint(ref Vector3 point, ref Plane plane)
{
return point.X * plane.Normal.X + point.Y * plane.Normal.Y + point.Z * plane.Normal.Z + plane.D;
}
/// <summary>
/// Returns the perpendicular distance from a point to a plane
/// </summary>
/// <param name="point">The point to check</param>
/// <param name="plane">The place to check</param>
/// <returns>The perpendicular distance from the point to the plane</returns>
public static float PerpendicularDistance(ref Vector3 point, ref Plane plane)
{
// dist = (ax + by + cz + d) / sqrt(a*a + b*b + c*c)
return (float)Math.Abs((plane.Normal.X * point.X + plane.Normal.Y * point.Y + plane.Normal.Z * point.Z)
/ Math.Sqrt(plane.Normal.X * plane.Normal.X + plane.Normal.Y * plane.Normal.Y + plane.Normal.Z * plane.Normal.Z));
}
}
[DataContract]
[DebuggerDisplay("{DebugDisplayString,nq}")]
public struct Plane : IEquatable<Plane>
{
#region Public Fields
[DataMember]
public float D;
[DataMember]
public Vector3 Normal;
#endregion Public Fields
#region Constructors
public Plane(Vector4 value)
: this(new Vector3(value.X, value.Y, value.Z), value.W)
{
}
public Plane(Vector3 normal, float d)
{
Normal = normal;
D = d;
}
public Plane(Vector3 a, Vector3 b, Vector3 c)
{
Vector3 ab = b - a;
Vector3 ac = c - a;
Vector3 cross = Vector3.Cross(ab, ac);
Vector3.Normalize(ref cross, out Normal);
D = -(Vector3.Dot(Normal, a));
}
public Plane(float a, float b, float c, float d)
: this(new Vector3(a, b, c), d)
{
}
/// <summary>
/// Create a <see cref="Plane"/> that contains the specified point and has the specified <see cref="Normal"/> vector.
/// </summary>
/// <param name="pointOnPlane">A point the created <see cref="Plane"/> should contain.</param>
/// <param name="normal">The normal of the plane.</param>
public Plane(Vector3 pointOnPlane, Vector3 normal)
{
Normal = normal;
D = -(
pointOnPlane.X * normal.X +
pointOnPlane.Y * normal.Y +
pointOnPlane.Z * normal.Z
);
}
#endregion Constructors
#region Public Methods
public float Dot(Vector4 value)
{
return ((((this.Normal.X * value.X) + (this.Normal.Y * value.Y)) + (this.Normal.Z * value.Z)) + (this.D * value.W));
}
public void Dot(ref Vector4 value, out float result)
{
result = (((this.Normal.X * value.X) + (this.Normal.Y * value.Y)) + (this.Normal.Z * value.Z)) + (this.D * value.W);
}
public float DotCoordinate(Vector3 value)
{
return ((((this.Normal.X * value.X) + (this.Normal.Y * value.Y)) + (this.Normal.Z * value.Z)) + this.D);
}
public void DotCoordinate(ref Vector3 value, out float result)
{
result = (((this.Normal.X * value.X) + (this.Normal.Y * value.Y)) + (this.Normal.Z * value.Z)) + this.D;
}
public float DotNormal(Vector3 value)
{
return (((this.Normal.X * value.X) + (this.Normal.Y * value.Y)) + (this.Normal.Z * value.Z));
}
public void DotNormal(ref Vector3 value, out float result)
{
result = ((this.Normal.X * value.X) + (this.Normal.Y * value.Y)) + (this.Normal.Z * value.Z);
}
/// <summary>
/// Transforms a normalized plane by a matrix.
/// </summary>
/// <param name="plane">The normalized plane to transform.</param>
/// <param name="matrix">The transformation matrix.</param>
/// <returns>The transformed plane.</returns>
public static Plane Transform(Plane plane, Matrix matrix)
{
Plane result;
Transform(ref plane, ref matrix, out result);
return result;
}
/// <summary>
/// Transforms a normalized plane by a matrix.
/// </summary>
/// <param name="plane">The normalized plane to transform.</param>
/// <param name="matrix">The transformation matrix.</param>
/// <param name="result">The transformed plane.</param>
public static void Transform(ref Plane plane, ref Matrix matrix, out Plane result)
{
// See "Transforming Normals" in http://www.glprogramming.com/red/appendixf.html
// for an explanation of how this works.
Matrix transformedMatrix;
Matrix.Invert(ref matrix, out transformedMatrix);
Matrix.Transpose(ref transformedMatrix, out transformedMatrix);
var vector = new Vector4(plane.Normal, plane.D);
Vector4 transformedVector;
Vector4.Transform(ref vector, ref transformedMatrix, out transformedVector);
result = new Plane(transformedVector);
}
/// <summary>
/// Transforms a normalized plane by a quaternion rotation.
/// </summary>
/// <param name="plane">The normalized plane to transform.</param>
/// <param name="rotation">The quaternion rotation.</param>
/// <returns>The transformed plane.</returns>
public static Plane Transform(Plane plane, Quaternion rotation)
{
Plane result;
Transform(ref plane, ref rotation, out result);
return result;
}
/// <summary>
/// Transforms a normalized plane by a quaternion rotation.
/// </summary>
/// <param name="plane">The normalized plane to transform.</param>
/// <param name="rotation">The quaternion rotation.</param>
/// <param name="result">The transformed plane.</param>
public static void Transform(ref Plane plane, ref Quaternion rotation, out Plane result)
{
Vector3.Transform(ref plane.Normal, ref rotation, out result.Normal);
result.D = plane.D;
}
public void Normalize()
{
float length = Normal.Length();
float factor = 1f / length;
Vector3.Multiply(ref Normal, factor, out Normal);
D = D * factor;
}
public static Plane Normalize(Plane value)
{
Plane ret;
Normalize(ref value, out ret);
return ret;
}
public static void Normalize(ref Plane value, out Plane result)
{
float length = value.Normal.Length();
float factor = 1f / length;
Vector3.Multiply(ref value.Normal, factor, out result.Normal);
result.D = value.D * factor;
}
public static bool operator !=(Plane plane1, Plane plane2)
{
return !plane1.Equals(plane2);
}
public static bool operator ==(Plane plane1, Plane plane2)
{
return plane1.Equals(plane2);
}
public override bool Equals(object other)
{
return (other is Plane) ? this.Equals((Plane)other) : false;
}
public bool Equals(Plane other)
{
return ((Normal == other.Normal) && (D == other.D));
}
public override int GetHashCode()
{
return Normal.GetHashCode() ^ D.GetHashCode();
}
public PlaneIntersectionType Intersects(BoundingBox box)
{
return box.Intersects(this);
}
public void Intersects(ref BoundingBox box, out PlaneIntersectionType result)
{
box.Intersects (ref this, out result);
}
public PlaneIntersectionType Intersects(BoundingFrustum frustum)
{
return frustum.Intersects(this);
}
public PlaneIntersectionType Intersects(BoundingSphere sphere)
{
return sphere.Intersects(this);
}
public void Intersects(ref BoundingSphere sphere, out PlaneIntersectionType result)
{
sphere.Intersects(ref this, out result);
}
internal PlaneIntersectionType Intersects(ref Vector3 point)
{
float distance;
DotCoordinate(ref point, out distance);
if (distance > 0)
return PlaneIntersectionType.Front;
if (distance < 0)
return PlaneIntersectionType.Back;
return PlaneIntersectionType.Intersecting;
}
internal string DebugDisplayString
{
get
{
return string.Concat(
this.Normal.DebugDisplayString, " ",
this.D.ToString()
);
}
}
public override string ToString()
{
return "{Normal:" + Normal + " D:" + D + "}";
}
/// <summary>
/// Deconstruction method for <see cref="Plane"/>.
/// </summary>
/// <param name="normal"></param>
/// <param name="d"></param>
public void Deconstruct(out Vector3 normal, out float d)
{
normal = Normal;
d = D;
}
#endregion
}
}