forked from AnyLoc/Revisit-Anything
-
Notifications
You must be signed in to change notification settings - Fork 0
/
place_rec_main_finetuned.py
396 lines (298 loc) · 16.2 KB
/
place_rec_main_finetuned.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import func_vpr
import numpy as np
import matplotlib.pyplot as plt
import h5py
from tqdm import tqdm
import datetime
import time
import sys
# import utils
# import nbr_agg
import argparse
from place_rec_global_config import datasets, experiments, workdir_data
from gt import get_gt
import utm
from glob import glob
from collections import defaultdict
import os
from os.path import join
from natsort import natsorted
import cv2
from typing import Literal, List
import torch
from tkinter import *
import matplotlib
from utilities import VLAD
from sklearn.decomposition import PCA
import pickle
import faiss
import json
from importlib import reload
# matplotlib.use('TkAgg')
matplotlib.use('Agg') #Headless
current_time = datetime.datetime.now().strftime("%d%m%Y_%H%M%S")
# from sklearn.neighbors import NearestNeighbors
# from sklearn.neighbors import KDTree
def recall_segloc(workdir, dataset_name, experiment_config,experiment_name, segFtVLAD1, segFtVLAD2, gt, segRange2, imInds1, map_calculate, domain, save_results=True):
# RECALL CALCULATION
# if pca then d = 512 else d = 49152
if experiment_config["pca"]:
d = 1024 #512 #PCA Dimension
print("POTENTIAL CAUSE for error: Using d in pca before index faiss as", d, "\n 1024 or 512, check properly")
else:
d = 49152 #VLAD Dimension
index = faiss.IndexFlatL2(d)
if experiment_config["pca"]:
index.add(func_vpr.normalizeFeat(segFtVLAD1.numpy()))
sims, matches = index.search(func_vpr.normalizeFeat(segFtVLAD2.numpy()),200)
else:
index.add(segFtVLAD1.numpy())
# sims, matches = index.search(segFtVLAD2.numpy(), 100)
sims, matches = index.search(segFtVLAD2.numpy(), 200)
# matches = matches.T[0]
if save_results:
out_folder = f"{workdir}/results/global/"
if not os.path.exists(out_folder):
os.makedirs(out_folder)
if not os.path.exists(f"{out_folder}/{experiment_name}"):
os.makedirs(f"{out_folder}/{experiment_name}")
pkl_file_results = f"{out_folder}/{experiment_name}/{dataset_name}_matches_sims_domain_{domain}__{experiment_config['results_pkl_suffix']}"
data_to_save = {'sims': sims, 'matches': matches}
# Saving the data to a pickle file
with open(pkl_file_results, 'wb') as file:
pickle.dump(data_to_save, file)
print(f"Results saved to {pkl_file_results}")
# For now just take 50 of those 100 matches
sims_50 = sims[:, :50]
matches_50 = matches[:, :50]
sims_50 =2-sims_50#.T[0]
# matches_justfirstone = matches.T[0]
# sims =2-sims.T[0]
max_seg_preds = func_vpr.get_matches(matches_50,gt,sims_50,segRange2,imInds1,n=5,method="max_seg_topk_wt_borda_Im")
max_seg_recalls = func_vpr.calc_recall(max_seg_preds, gt, 5)
print("VLAD + PCA Results \n ")
if map_calculate:
# mAP calculation
queries_results = func_vpr.convert_to_queries_results_for_map(max_seg_preds, gt)
map_value = func_vpr.calculate_map(queries_results)
print(f"Mean Average Precision (mAP): {map_value}")
print("Max Seg Logs: ", max_seg_recalls)
return max_seg_recalls
if __name__=="__main__":
parser = argparse.ArgumentParser(description='Global Place Recognition on Any Dataset. See place_rec_global_config.py to see how to give arguments.')
parser.add_argument('--dataset', required=True, help='Dataset name')
parser.add_argument('--experiment', required=True, help='Experiment name')
parser.add_argument('--vocab-vlad',required=True, choices=['domain', 'map'], help='Vocabulary choice for VLAD. Options: map, domain.')
parser.add_argument('--save-results', action='store_true', help='Save results to file')
topk_value = 5 # This gives all results from recall@1 to 5
map_calculate = False #Mean average precision: False always except to replicate certain results in supplementary.
args = parser.parse_args()
save_results = args.save_results
print("Save results: ", save_results)
print(f"Vocabulary choice for VLAD (domain/map) is {args.vocab_vlad}")
experiment_name = f"segVLAD_finetuned_{args.experiment}_{args.dataset}_{current_time}"#"experiment_D_baidu_FastSAM_320"
# Load dataset and experiment configurations
dataset_config = datasets.get(args.dataset, {})
if not dataset_config:
raise ValueError(f"Dataset '{args.dataset}' not found in configuration.")
experiment_config = experiments.get(args.experiment, {})
if not experiment_config:
raise ValueError(f"Experiment '{args.experiment}' not found in configuration.")
print("The selected dataset config is: \n", dataset_config)
print("The selected experiment config is: \n", experiment_config)
cfg = dataset_config['cfg']
workdir = f'{workdir_data}/{args.dataset}/out'
os.makedirs(workdir, exist_ok=True)
save_path_results = f"{workdir}/results/"
cache_dir = './cache'
device = torch.device("cuda")
# Dino_v2 properties (parameters)
desc_layer: int = 31
desc_facet: Literal["query", "key", "value", "token"] = "value"
num_c: int = 32
# Domain for use case (deployment environment)
# domain: Literal["aerial", "indoor", "urban"] = dataset_config['domain_vlad_cluster']
# domain = dataset_config['domain_vlad_cluster']
# domain = "urban"
domain_prefix = dataset_config['domain_vlad_cluster'] if args.vocab_vlad == 'domain' else dataset_config['map_vlad_cluster']
# domain = "VPAirNVFinetuned"
domain = domain_prefix + "NVFinetuned"
ext_specifier = f"dinov2_vitg14/l{desc_layer}_{desc_facet}_c{num_c}"
# c_centers_file = os.path.join(cache_dir, "vocabulary", ext_specifier,
# domain, "c_centers.pt")
c_centers_file = os.path.join(cache_dir, "vocabulary", ext_specifier,
domain, "c_centers.pt")
# domain, "pitts_nv_c_centers.pt")
print(f" domain is {domain} and cluster center file is {c_centers_file}")
assert os.path.isfile(c_centers_file), "Cluster centers not cached!"
c_centers = torch.load(c_centers_file)
assert c_centers.shape[0] == num_c, "Wrong number of clusters!"
vlad = VLAD(num_c, desc_dim=None,
cache_dir=os.path.dirname(c_centers_file))
# Fit (load) the cluster centers (this'll also load the desc_dim)
vlad.fit(None)
#Load Descriptors
dataPath1_r = f"{workdir_data}/{args.dataset}/{dataset_config['data_subpath1_r']}/"
dataPath2_q = f"{workdir_data}/{args.dataset}/{dataset_config['data_subpath2_q']}/"
dino_r_path = f"{workdir}/{dataset_config['dinoNV_h5_filename_r']}"
dino_q_path = f"{workdir}/{dataset_config['dinoNV_h5_filename_q']}"
dino1_h5_r = h5py.File(dino_r_path, 'r')
dino2_h5_q = h5py.File(dino_q_path, 'r')
ims_sidx, ims_eidx, ims_step = 0, None, 1
ims1_r = natsorted(os.listdir(f'{dataPath1_r}'))
ims1_r = ims1_r[ims_sidx:ims_eidx][::ims_step]
ims2_q = natsorted(os.listdir(f'{dataPath2_q}'))
ims2_q = ims2_q[ims_sidx:ims_eidx][::ims_step]
# dataset specific ground truth
gt = get_gt(
dataset=args.dataset,
cfg=cfg,
workdir_data=workdir_data,
ims1_r=ims1_r,
ims2_q=ims2_q,
func_vpr_module=func_vpr
)
if experiment_config["global_method_name"] == "SegLoc":
dh = cfg['desired_height'] // 14
dw = cfg['desired_width'] // 14
idx_matrix = np.empty((cfg['desired_height'], cfg['desired_width'], 2)).astype('int32')
for i in range(cfg['desired_height']):
for j in range(cfg['desired_width']):
idx_matrix[i, j] = np.array([np.clip(i//14, 0, dh-1), np.clip(j//14, 0, dw-1)])
ind_matrix = np.ravel_multi_index(idx_matrix.reshape(-1, 2).T, (dh, dw))
ind_matrix = torch.tensor(ind_matrix, device='cuda')
masks_r_path = f"{workdir}/{dataset_config['masks_h5_filename_r']}"
masks_q_path = f"{workdir}/{dataset_config['masks_h5_filename_q']}"
masks1_h5_r = h5py.File(masks_r_path, 'r')
masks2_h5_q = h5py.File(masks_q_path, 'r')
order = experiment_config['order']
print("nbr agg order number: ", order)
segRange1 = []
segRange2 = []
desc_dim = 768
print("NOTE: desc_dim here in FineT is 768, different from 1536 of PreT")
vlad_dim = 32 * desc_dim
# segFtVLAD1 = torch.empty((0, vlad_dim))
# segFtVLAD2 = torch.empty((0, vlad_dim))
# For PCA
total_segments = 0# Counter for sampled segments
max_segments = 50000 # Max segments to sample in total
batch_size = 100 # Number of images to process before applying PCA
if experiment_config["pca"]:
if args.vocab_vlad == 'domain':
pca_model_path = f"{workdir}/{args.dataset}{experiment_config['pca_model_pkl_dinoNV']}"
elif args.vocab_vlad == 'map':
pca_model_path = f"{workdir}/{args.dataset}{experiment_config['pca_model_pkl_map_dinoNV']}"
else:
raise ValueError(f"Unknown vocab-vlad value: {args.vocab_vlad}")
else:
pca_model_path = None
segFtVLAD1_list = []
segFtVLAD1Pca_list = []
batch_descriptors_r = []
segFtVLAD2_list = []
segFtVLAD2Pca_list = []
batch_descriptors_q = []
imInds1 = np.array([], dtype=int)
imInds2 = np.array([], dtype=int)
execution_times_total = []
print("Computing SegLoc for all images in the dataset...")
for r_id, r_img in tqdm(enumerate(ims1_r), total=len(ims1_r), desc="Processing for reference images..."):
# print(r_id, r_img)
# Preload all masks for the image
masks_seg = func_vpr.preload_masks(masks1_h5_r, r_img)
imInds1_ind, regInds1_ind, segMask1_ind = func_vpr.getIdxSingleFast(r_id,masks_seg,minArea=experiment_config['minArea'])
imInds1 = np.concatenate((imInds1, imInds1_ind))
if order:
adjMat1_ind = func_vpr.nbrMasksAGGFastSingle(masks_seg, order)
else:
adjMat1_ind = None
gd = func_vpr.seg_vlad_gpu_single(ind_matrix, idx_matrix, dino1_h5_r, r_img, segMask1_ind, c_centers, cfg, desc_dim, adj_mat=adjMat1_ind)
# gd, execution_time = func_vpr.seg_vlad_gpu_single(ind_matrix, idx_matrix, dino1_h5_r, r_img, segMask1_ind, c_centers, cfg, desc_dim=768, adj_mat=adjMat1_ind)
# execution_times_total.append(execution_time)
if experiment_config["pca"]:
batch_descriptors_r.append(gd)
if (r_id + 1) % batch_size == 0 or (r_id + 1) == len(ims1_r): ## Once we have accumulated descriptors for 100 images or are at the last image, process the batch
segFtVLAD1_batch = torch.cat(batch_descriptors_r, dim=0)
# Reset batch descriptors for the next batch
batch_descriptors_r = []
print("Applying PCA to batch descriptors... at image ", r_id)
segFtVLAD1Pca_batch = func_vpr.apply_pca_transform_from_pkl(segFtVLAD1_batch, pca_model_path)
del segFtVLAD1_batch
segFtVLAD1Pca_list.append(segFtVLAD1Pca_batch)
else:
# segFtVLAD1 = torch.cat((segFtVLAD1, imfts_batch), dim=0) # instead of this, we will append to a list and then cat at the end
segFtVLAD1_list.append(gd) #imfts_batch same as gd here, in the full image function, it is for 100 images at a time
# segFtVLAD1_list.append(gd)
# average_time = sum(execution_times_total) / len(execution_times_total)
# print(f"Average execution time for vlad_matmuls_per_cluster: {average_time} seconds")
# segFtVLAD1 = torch.cat(segFtVLAD1_list, dim=0)
if experiment_config["pca"]:
segFtVLAD1 = torch.cat(segFtVLAD1Pca_list, dim=0)
print("Shape of segment descriptors with PCA:", segFtVLAD1.shape)
del segFtVLAD1Pca_list
else:
segFtVLAD1 = torch.cat(segFtVLAD1_list, dim=0)
print("Shape of segment descriptors without PCA:", segFtVLAD1.shape)
del segFtVLAD1_list
for i in range(imInds1[-1]+1):
segRange1.append(np.where(imInds1==i)[0])
# QUERIES
for q_id, q_img in tqdm(enumerate(ims2_q), total=len(ims2_q), desc="Processing for query images..."):
# print("query: ", q_id, q_img)
# Preload all masks for the image
masks_seg = func_vpr.preload_masks(masks2_h5_q, q_img)
imInds2_ind, regInds2_ind, segMask2_ind = func_vpr.getIdxSingleFast(q_id,masks_seg,minArea=experiment_config['minArea'])
imInds2 = np.concatenate((imInds2, imInds2_ind))
if order:
adjMat2_ind = func_vpr.nbrMasksAGGFastSingle(masks_seg, order)
else:
adjMat2_ind = None
gd = func_vpr.seg_vlad_gpu_single(ind_matrix, idx_matrix, dino2_h5_q, q_img, segMask2_ind, c_centers, cfg, desc_dim, adj_mat=adjMat2_ind)
if experiment_config["pca"]:
batch_descriptors_q.append(gd)
if (q_id + 1) % batch_size == 0 or (q_id + 1) == len(ims2_q): ## Once we have accumulated descriptors for 100 images or are at the last image, process the batch
segFtVLAD2_batch = torch.cat(batch_descriptors_q, dim=0)
# Reset batch descriptors for the next batch
batch_descriptors_q = []
print("query: Applying PCA to batch descriptors... at image ", q_id)
segFtVLAD2Pca_batch = func_vpr.apply_pca_transform_from_pkl(segFtVLAD2_batch, pca_model_path)
del segFtVLAD2_batch
segFtVLAD2Pca_list.append(segFtVLAD2Pca_batch)
else:
# segFtVLAD1 = torch.cat((segFtVLAD1, imfts_batch), dim=0) # instead of this, we will append to a list and then cat at the end
segFtVLAD2_list.append(gd) #imfts_batch same as gd here, in the full image function, it is for 100 images at a time
# segFtVLAD1_list.append(gd)
if experiment_config["pca"]:
segFtVLAD2 = torch.cat(segFtVLAD2Pca_list, dim=0)
print("Shape of q segment descriptors with PCA:", segFtVLAD2.shape)
del segFtVLAD2Pca_list
else:
segFtVLAD2 = torch.cat(segFtVLAD2_list, dim=0)
print("Shape of q segment descriptors without PCA:", segFtVLAD2.shape)
del segFtVLAD2_list
for i in range(imInds2[-1]+1):
segRange2.append(np.where(imInds2==i)[0])
if save_results:
out_folder = f"{workdir}/results/global/"
if not os.path.exists(out_folder):
os.makedirs(out_folder)
if not os.path.exists(f"{out_folder}/{experiment_name}"):
os.makedirs(f"{out_folder}/{experiment_name}")
pkl_file_results1 = f"{out_folder}/{experiment_name}/{args.dataset}_segFtVLAD1_domain_{domain}__{experiment_config['results_pkl_suffix']}"
pkl_file_results2 = f"{out_folder}/{experiment_name}/{args.dataset}_segFtVLAD2_domain_{domain}__{experiment_config['results_pkl_suffix']}"
# Saving segFtVLAD1
with open(pkl_file_results1, 'wb') as file:
pickle.dump(segFtVLAD1, file)
print(f"segFtVLAD1 tensor saved to {pkl_file_results1}")
# Saving segFtVLAD2
with open(pkl_file_results2, 'wb') as file:
pickle.dump(segFtVLAD2, file)
print(f"segFtVLAD2 tensor saved to {pkl_file_results2}")
# RECALL CALCULATION
recall_segrec = recall_segloc(workdir, args.dataset, experiment_config, experiment_name, segFtVLAD1, segFtVLAD2, gt, segRange2, imInds1, map_calculate, domain, save_results)
print("VLAD + PCA RESULTS for segloc for dataset config: ", dataset_config, " ::: experiment config ::: ", experiment_config, " using pca file : ", pca_model_path, "experiment_name: ", experiment_name)
print(recall_segrec)
else:
raise ValueError(f"Global Method '{experiment_config['global_method_name']}' not found in configuration.")
print("Script fully Executed! Check your results!")