-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_slomo.py
334 lines (272 loc) · 10.4 KB
/
train_slomo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
import os
import pickle
import numpy as np
import argparse
import warnings
warnings.filterwarnings("ignore")
import tensorflow as tf
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.WARN)
from tensorflow.contrib import summary
from data_pipeline.read_record import read_and_decode
from utils.optimizer import get_optimizer
from utils.optimizer import count_parameters
from utils.visualizer import visualize_frames
from models import slomo
from models import vgg16
def training(args):
# DIRECTORY FOR CKPTS and META FILES
# ROOT_DIR = '/neuhaus/movie/dataset/tf_records'
ROOT_DIR = '/media/data/movie/dataset/tf_records'
TRAIN_REC_PATH = os.path.join(
ROOT_DIR,
args.experiment_name,
'train.tfrecords')
VAL_REC_PATH = os.path.join(
ROOT_DIR,
args.experiment_name,
'val.tfrecords')
CKPT_PATH = os.path.join(
ROOT_DIR,
args.experiment_name,
args.ckpt_folder_name + '/')
# SCOPING BEGINS HERE
with tf.Session().as_default() as sess:
train_queue = tf.train.string_input_producer(
[TRAIN_REC_PATH], num_epochs=None)
train_fFrames, train_lFrames, train_iFrames, train_mfn =\
read_and_decode(
filename_queue=train_queue,
is_training=True,
batch_size=args.batch_size,
n_intermediate_frames=args.n_IF)
val_queue = tf.train.string_input_producer(
[VAL_REC_PATH], num_epochs=None)
val_fFrames, val_lFrames, val_iFrames, val_mfn = \
read_and_decode(
filename_queue=val_queue,
is_training=False,
batch_size=args.batch_size,
n_intermediate_frames=args.n_IF)
with tf.variable_scope('slomo'):
print('TRAIN FRAMES (first):')
train_output = slomo.SloMo_model(train_fFrames,
train_lFrames,first_kernel=7,
second_kernel=5,reuse=False,
t_steps=args.n_IF,verbose=False)
train_rec_iFrames = train_output[0]
train_flow_01 = train_output[1]
train_flow_10 = train_output[2]
train_weighted_ft0 = train_output[3]
train_weighted_ft1 = train_output[4]
with tf.variable_scope('slomo', reuse=tf.AUTO_REUSE):
print('VAL FRAMES (first):')
val_output = slomo.SloMo_model(val_fFrames,
val_lFrames,first_kernel=7,
second_kernel=5,reuse=False,
t_steps=args.n_IF,verbose=False)
val_rec_iFrames = val_output[0]
val_flow_01 = val_output[1]
val_flow_10 = val_output[2]
val_weighted_ft0 = val_output[3]
val_weighted_ft1 = val_output[4]
# Weights should be kept locally ~ 500 MB space
with tf.variable_scope('vgg16'):
train_iFrames_features = vgg16.build_vgg16(
train_iFrames, end_point='pool5').features
with tf.variable_scope('vgg16', reuse=tf.AUTO_REUSE):
train_rec_iFrames_features = vgg16.build_vgg16(
train_rec_iFrames, end_point='pool5').features
print('Global parameters:{}'.format(
count_parameters(tf.global_variables())))
print('Learnable model parameters:{}'.format(
count_parameters(tf.trainable_variables())))
train_l2_loss = slomo.l2_loss(train_iFrames,train_rec_iFrames)
percep_loss = slomo.l2_loss(
train_iFrames_features,
train_rec_iFrames_features)
wrap_loss = slomo.wrapping_loss(train_fFrames,train_lFrames,
train_iFrames,train_flow_01,train_flow_10,
train_weighted_ft0, train_weighted_ft1)
smooth_loss = slomo.smoothness_loss(train_flow_01,
train_flow_10)
# DEFINE METRICS
val_loss = slomo.l2_loss(
val_iFrames, val_rec_iFrames)
total_train_loss = 0.1*train_l2_loss+1.0*percep_loss+\
1.0*wrap_loss+50.0*smooth_loss
# SUMMARIES
tf.summary.scalar('train_l2_loss', train_l2_loss)
tf.summary.scalar('wrap_loss', wrap_loss)
tf.summary.scalar('smooth_loss', smooth_loss)
tf.summary.scalar('percep_loss', percep_loss)
tf.summary.scalar('total_val_l2_loss', val_loss)
tf.summary.scalar('total_train_loss', total_train_loss)
merged = tf.summary.merge_all()
train_writer = tf.summary.FileWriter(
CKPT_PATH + 'train',
sess.graph)
with tf.variable_scope("global_step_and_learning_rate"):
global_step = tf.contrib.framework.get_or_create_global_step()
learning_rate = tf.train.exponential_decay(
args.learning_rate,
global_step,
100000, #FLAGS.decay_step
0.1, #FLAGS.decay_rate
staircase=True) #FLAGS.stair
incr_global_step = tf.assign(
global_step,
global_step + 1)
with tf.variable_scope("optimizer"):
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
tvars = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES,
scope='slomo')
optimizer = tf.train.AdamOptimizer(
learning_rate,
beta1=0.9)
grads_and_vars = optimizer.compute_gradients(
total_train_loss,
tvars)
train_op = optimizer.apply_gradients(
grads_and_vars)
init_op = tf.group(
tf.global_variables_initializer(),
tf.local_variables_initializer())
saver = tf.train.Saver()
sess.run(init_op)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(
coord=coord)
# START TRAINING HERE
for iteration in range(args.train_iters):
_, t_summ, t_loss = sess.run(
[train_op, merged, total_train_loss])
train_writer.add_summary(t_summ, iteration)
print('Iter:{}/{}, Train Loss:{}'.format(
iteration,
args.train_iters,
t_loss))
if iteration % args.val_every == 0:
v_loss = sess.run(val_loss)
print('Iter:{}, Val Loss:{}'.format(
iteration,
v_loss))
if iteration % args.save_every == 0:
saver.save(
sess,
CKPT_PATH + 'iter:{}_val:{}'.format(
str(iteration),
str(round(v_loss, 3))))
if iteration % args.plot_every == 0:
start_frames, end_frames, mid_frames,\
rec_mid_frames = sess.run(
[train_fFrames, train_lFrames,\
train_iFrames,\
train_rec_iFrames])
visualize_frames(
start_frames,
end_frames,
mid_frames,
rec_mid_frames,
training=True,
iteration=iteration,
save_path=os.path.join(
CKPT_PATH,
'train_plots/'))
start_frames, end_frames, mid_frames,\
rec_mid_frames = sess.run(
[val_fFrames, val_lFrames,\
val_iFrames,
val_rec_iFrames])
visualize_frames(
start_frames,
end_frames,
mid_frames,
rec_mid_frames,
training=False,
iteration=iteration,
save_path=os.path.join(
CKPT_PATH,
'validation_plots/'))
print('Training complete.....')
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='params of running the experiment')
parser.add_argument(
'--train_iters',
type=int,
default=200000,
help='Mention the number of training iterations')
parser.add_argument(
'--val_every',
type=int,
default=1000,
help='Number of iterations after which validation is done')
parser.add_argument(
'--save_every',
type=int,
default=10000,
help='Number of iterations after which model is saved')
parser.add_argument(
'--plot_every',
type=int,
default=5000,
help='Nu,ber of iterations after which plots will be saved')
parser.add_argument(
'--experiment_name',
type=str,
default='slack_20px_fluorescent_window_5',
help='to mention the experiment folder in tf_records')
parser.add_argument(
'--optimizer',
type=str,
default='adam',
help='1. adam, 2. SGD + momentum')
parser.add_argument(
'--learning_rate',
type=float,
default=1e-4,
help='To mention the starting learning rate')
parser.add_argument(
'--batch_size',
type=int,
default=4,
help='To mention the number of samples in a batch')
parser.add_argument(
'--loss',
type=str,
default='l2',
help='0:l1, 1:l2')
parser.add_argument(
'--n_IF',
type=int,
default=3,
help='Mentions intermediate frames')
parser.add_argument(
'--model_name',
type=str,
default='slowmo',
help='Mentions name of model to be run')
parser.add_argument(
'--debug',
type=int,
default=1,
help='Specifies whether to run the script in DEBUG mode')
args = parser.parse_args()
if args.optimizer == 'adam': args.optim_id = 1
elif args.optimizer == 'sgd': args.optim_id = 2
if args.loss == 'l1': args.loss_id = 0
elif args.loss == 'l2': args.loss_id = 1
# ckpt_folder_name: model-name_iters_batch_size_\
# optimizer_lr_main-loss_additional-losses_loss-reg
args.ckpt_folder_name = '{}_{}_{}_{}_{}_{}_nIF-{}'.format(
args.model_name,
str(args.train_iters),
str(args.batch_size),
args.optimizer,
str(args.learning_rate),
args.loss,
str(args.n_IF))
if args.debug:
args.ckpt_folder_name = 'demo'
training(args)