-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRealWorld.py
240 lines (222 loc) · 7.78 KB
/
RealWorld.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from impl import metrics, PolyConv, models, GDataset, utils
import datasets
import torch
from torch.optim import Adam
import optuna
import torch.nn as nn
import numpy as np
import seaborn as sns
def split():
global baseG, trn_dataset, val_dataset, tst_dataset
baseG.mask = datasets.split(baseG, split=args.split)
trn_dataset = GDataset.GDataset(*baseG.get_split("train"))
val_dataset = GDataset.GDataset(*baseG.get_split("valid"))
tst_dataset = GDataset.GDataset(*baseG.get_split("test"))
def buildModel(conv_layer: int = 10,
aggr: str = "gcn",
alpha: float = 0.2,
dpb: float = 0.0,
dpt: float = 0.0,
**kwargs):
if args.multilayer:
emb = models.Seq([
models.TensorMod(baseG.x),
nn.Dropout(p=dpb),
nn.Sequential(nn.Linear(baseG.x.shape[1], output_channels),
nn.ReLU(inplace=True),
nn.Linear(output_channels, output_channels)),
nn.Dropout(dpt, inplace=True)
])
elif args.resmultilayer:
emb = models.Seq([
models.TensorMod(baseG.x),
nn.Dropout(p=dpb),
nn.Linear(baseG.x.shape[1], output_channels),
models.ResBlock(
nn.Sequential(nn.ReLU(inplace=True),
nn.Linear(output_channels, output_channels))),
nn.Dropout(dpt, inplace=True)
])
else:
emb = models.Seq([
models.TensorMod(baseG.x),
nn.Dropout(p=dpb),
nn.Linear(baseG.x.shape[1], output_channels),
nn.Dropout(dpt, inplace=True)
])
from functools import partial
frame_fn = PolyConv.PolyConvFrame
conv_fn = partial(PolyConv.JacobiConv, **kwargs)
if args.power:
conv_fn = PolyConv.PowerConv
if args.legendre:
conv_fn = PolyConv.LegendreConv
if args.cheby:
conv_fn = PolyConv.ChebyshevConv
if args.bern:
conv = PolyConv.Bern_prop(conv_layer)
else:
if args.fixalpha:
from bestHyperparams import fixalpha_alpha
alpha = fixalpha_alpha[args.dataset]["power" if args.power else (
"cheby" if args.cheby else "jacobi")]
conv = frame_fn(conv_fn,
depth=conv_layer,
aggr=aggr,
alpha=alpha,
fixed=args.fixalpha)
comb = models.Combination(output_channels, conv_layer + 1, sole=args.sole)
gnn = models.Gmodel(emb, conv, comb).to(device)
return gnn
def work(conv_layer: int = 10,
aggr: str = "gcn",
alpha: float = 0.2,
lr1: float = 1e-3,
lr2: float = 1e-3,
lr3: float = 1e-3,
wd1: float = 0,
wd2: float = 0,
wd3: float = 0,
dpb=0.0,
dpt=0.0,
**kwargs):
outs = []
for rep in range(args.repeat):
utils.set_seed(rep)
split()
gnn = buildModel(conv_layer, aggr, alpha, dpb, dpt, **kwargs)
optimizer = Adam([{
'params': gnn.emb.parameters(),
'weight_decay': wd1,
'lr': lr1
}, {
'params': gnn.conv.parameters(),
'weight_decay': wd2,
'lr': lr2
}, {
'params': gnn.comb.parameters(),
'weight_decay': wd3,
'lr': lr3
}])
val_score = 0
early_stop = 0
for i in range(1000):
utils.train(optimizer, gnn, trn_dataset, loss_fn)
score, _ = utils.test(gnn, val_dataset, score_fn, loss_fn=loss_fn)
if score >= val_score:
early_stop = 0
val_score = score
else:
early_stop += 1
if early_stop > 200:
break
outs.append(val_score)
return np.average(outs)
def search_hyper_params(trial: optuna.Trial):
conv_layer = 10
aggr = "gcn"
lr1 = trial.suggest_categorical("lr1", [0.0005, 0.001, 0.005, 0.01, 0.05])
lr2 = trial.suggest_categorical("lr2", [0.0005, 0.001, 0.005, 0.01, 0.05])
lr3 = trial.suggest_categorical("lr3", [0.0005, 0.001, 0.005, 0.01, 0.05])
wd1 = trial.suggest_categorical("wd1", [0.0, 5e-5, 1e-4, 5e-4, 1e-3])
wd2 = trial.suggest_categorical("wd2", [0.0, 5e-5, 1e-4, 5e-4, 1e-3])
wd3 = trial.suggest_categorical("wd3", [0.0, 5e-5, 1e-4, 5e-4, 1e-3])
alpha = trial.suggest_float('alpha', 0.5, 2.0, step=0.5)
a = trial.suggest_float('a', -1.0, 2.0, step=0.25)
b = trial.suggest_float('b', -0.5, 2.0, step=0.25)
dpb = trial.suggest_float("dpb", 0.0, 0.9, step=0.1)
dpt = trial.suggest_float("dpt", 0.0, 0.9, step=0.1)
return work(conv_layer,
aggr,
alpha,
lr1,
lr2,
lr3,
wd1,
wd2,
wd3,
dpb,
dpt,
a=a,
b=b)
def test(conv_layer=10,
aggr="gcn",
alpha=1.0,
lr1=1e-2,
lr2=1e-2,
lr3=1e-2,
wd1=0.0,
wd2=0.0,
wd3=0.0,
dpb=0.0,
dpt=0.0,
**kwargs):
outs = []
vals = []
for rep in range(args.repeat):
print("repeat ", rep)
utils.set_seed(rep)
split()
gnn = buildModel(conv_layer, aggr, alpha, dpb, dpt, **kwargs)
optimizer = Adam([{
'params': gnn.emb.parameters(),
'weight_decay': wd1,
'lr': lr1
}, {
'params': gnn.conv.parameters(),
'weight_decay': wd2,
'lr': lr2
}, {
'params': gnn.comb.parameters(),
'weight_decay': wd3,
'lr': lr3
}])
val_score = 0
tst_score = 0
early_stop = 0
for i in range(1000):
utils.train(optimizer, gnn, trn_dataset, loss_fn)
score, _ = utils.test(gnn, val_dataset, score_fn, loss_fn=loss_fn)
if score >= val_score:
early_stop = 0
val_score = score
if args.savemodel:
torch.save(gnn.state_dict(), f"{args.dataset}_{rep}.pt")
tst_score, _ = utils.test(gnn,
tst_dataset,
score_fn,
loss_fn=loss_fn)
else:
early_stop += 1
if early_stop > 200:
break
vals.append(val_score)
outs.append(tst_score)
outs = np.array(outs)
print(
f"avg {np.average(outs):.4f} error {np.max(np.abs(sns.utils.ci(sns.algorithms.bootstrap(outs,func=np.mean,n_boot=1000),95)-outs.mean())):.4f}"
)
return np.average(outs)
if __name__ == '__main__':
args = utils.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
baseG = datasets.load_dataset(args.dataset, args.split)
baseG.to(device)
trn_dataset, val_dataset, tst_dataset = None, None, None
output_channels = baseG.y.unique().shape[0]
loss_fn = nn.CrossEntropyLoss()
score_fn = metrics.multiclass_accuracy
split()
if args.test:
from bestHyperparams import realworld_params
best_hyperparams = realworld_params
print(test(**(best_hyperparams[args.dataset])))
else:
study = optuna.create_study(direction="maximize",
storage="sqlite:///" + args.path +
args.name + ".db",
study_name=args.name,
load_if_exists=True)
study.optimize(search_hyper_params, n_trials=args.optruns)
print("best params ", study.best_params)
print("best valf1 ", study.best_value)