-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathRadar2Catchment_Linux.py
2132 lines (1625 loc) · 71 KB
/
Radar2Catchment_Linux.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#
# Radar to Catchment v3.3 for Linux
#
# Copyright Ruben Imhoff
#
# Contact: Ruben Imhoff ([email protected])
# Aart Overeem ([email protected])
#
#######################################################################################
print("This script requires some Python packages in order to run. If one of these packages is not yet installed, it is recommended to install them prior to running the script. For most systems, this is a matter of typing the following text in a command window: pip install [name of package] ")
import h5py
import numpy as np
import shapefile
import urllib
import ftplib
from osgeo import gdal
from osgeo import gdal_array
from osgeo import ogr, osr
import ogr, osr, os, sys
import osgeo.gdal
import subprocess
from osgeo import gdal, gdalnumeric, ogr, osr
from PIL import Image, ImageDraw
from subprocess import call
import Tkinter
import tkFileDialog
from Tkinter import *
import inspect
from numpy import *
import osr, gdal
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
from numpy import linspace
from numpy import meshgrid
from osgeo import gdalconst
import gdalnumeric
from PIL import Image
from netCDF4 import Dataset
import netCDF4
import csv
from datetime import datetime
startTime = datetime.now()
#Ask what the user wants to do
while True:
root = Tk()
FirstQues = IntVar()
FirstQues.set(1)
options = [
("Get precipitation values for a pixel", 1),
("Get precipitation values for an area / a catchment", 2)
]
def ShowChoice():
print(FirstQues.get())
root.quit()
Label(root, text="""What would you like to do? Click on your choice and close the window.""", justify = LEFT, padx = 20).pack()
for txt, val in options:
Radiobutton(root, text=txt, padx = 20, variable = FirstQues, command = ShowChoice, value=val,tristatevalue=0).pack(anchor=W)
mainloop()
FirstQues = FirstQues.get()
break
if FirstQues == 1:
def safe():
print(e1.get())
DataQuestion = e1.get()
root2.quit()
root2 = Tk()
root2.title("Indicate which type of dataset will be supplied. Fill out the number of your choice and click on enter.")
Label(root2, text = "1 NLRadarhdf5_NL25", justify = LEFT).grid(row=0)
Label(root2, text = "2 NLRadarhdf5_NL21", justify = LEFT).grid(row=1)
Label(root2, text = "3 DERadar_Radolan", justify = LEFT).grid(row=2)
Label(root2, text = "4 NL KDC data in NETCDF", justify = LEFT).grid(row=3)
Label(root2, text = "5 OPERA - Radar Europe", justify = LEFT).grid(row=4)
Label(root2, text = "6 NASA GPM IMERG_HQprecipitation level 3", justify = LEFT).grid(row=5)
e1 = Entry(root2)
e1.grid(row=2, column=3)
Button(root2, text = "Enter", command = safe).grid(row=3,column=3,sticky=W,pady=4)
mainloop()
DataQuestion = e1.get()
print(DataQuestion)
if DataQuestion == "1":
########################################################
# Open the hdf5-files for the Netherlands, in this case the NL_25 dataset.
########################################################
root = Tkinter.Tk()
root.withdraw()
dirpath = tkFileDialog.askdirectory(parent=root, title='Open the main folder with hdf5-files and press OK')
list = subprocess.check_output(['find',dirpath,'-name','*.h5']).split('\n')[:-1]
Outfile = os.path.join(dirpath,'Results','PixelPrec.csv')
outcsv = open(Outfile,"wb")
writer = csv.writer(outcsv, delimiter = ",")
writer.writerow(['Name','Precipitation [mm]'])
########################################################
# It is time to start the 'For Loop'
########################################################
while True:
def safe():
print(e1.get())
print(e2.get())
Col = e1.get()
Row = e2.get()
master.quit()
master = Tk()
Label(master, text = "Column number of the target cell", justify = LEFT).grid(row=0)
Label(master, text = "Row number of the target cell", justify = LEFT).grid(row=1)
e1 = Entry(master)
e2 = Entry(master)
e1.grid(row=0, column=1)
e2.grid(row=1, column=1)
Button(master, text = "Enter", command = safe).grid(row=3,column=1,sticky=W,pady=4)
mainloop()
Col = e1.get()
Row = e2.get()
break
# Ask if the user wants to change reflectivities into mm.
def safe():
print(e1.get())
CalcQues = e1.get()
master.quit()
master = Tk()
Label(master, text = "Do you want to convert reflectivities [dBZ] into [mm] of rain? Note: only use this").grid(row=0)
Label(master, text = "tool when the provided data has reflectivities in dBZ. Please give the number of your answer: [1] Yes, [2] No and press enter").grid(row=1)
e1 = Entry(master)
e1.grid(row=0, column=1)
Button(master, text = "Enter", command = safe).grid(row=3,column=1,sticky=W,pady=4)
mainloop()
CalcQues = e1.get()
if CalcQues == "1":
def safe():
print(e1.get())
NumMin = e1.get()
master.quit()
master = Tk()
Label(master, text = "What is the temporal resolution of your data (e.g. 5 min. data)? Please give the amount in minutes.").grid(row=0)
e1 = Entry(master)
e1.grid(row=0, column=1)
Button(master, text = "Enter", command = safe).grid(row=3,column=1,sticky=W,pady=4)
mainloop()
NumMin = e1.get()
NumMin = float(NumMin)
else:
print("No conversion will take place.")
########################################################
# It is time to start the 'For Loop'
########################################################
for x in range(0, len(list)):
hdf5filename = list[x]
file = h5py.File(list[x],'r+')
filedata = file['/image1/image_data'][()] # Open "image1" dataset under the root group,
# this dataset consists of the accumulated 5 min precipitation amounts.
if CalcQues == "1":
filedata = 0.5 * filedata - 32
filedata = ((10.**((filedata-23)/16))/(60/NumMin))
if CalcQues == "2":
filedata = filedata * 0.01
basename = os.path.basename(hdf5filename)
basenametxt = os.path.splitext(basename)[0]
print(basenametxt)
# Multiply the data with 0.01 to get mm.
filedata = filedata * 0.01
Value = filedata[Row,Col]
writer.writerow([basenametxt, Value])
print("End of this script.")
if DataQuestion == "2":
########################################################
# Open the hdf5-files for the Netherlands, in this case the NL_21 dataset.
########################################################
root = Tkinter.Tk()
root.withdraw()
dirpath = tkFileDialog.askdirectory(parent=root, title='Open the main folder with hdf5-files and press OK')
list = subprocess.check_output(['find',dirpath,'-name','*.h5']).split('\n')[:-1]
Outfile = os.path.join(dirpath,'Results','PixelPrec.csv')
outcsv = open(Outfile,"wb")
writer = csv.writer(outcsv, delimiter = ",")
writer.writerow(['Name','Precipitation [mm]'])
########################################################
# It is time to start the 'For Loop'
########################################################
while True:
def safe():
print(e1.get())
print(e2.get())
Col = e1.get()
Row = e2.get()
master.quit()
master = Tk()
Label(master, text = "Column number of the target cell", justify = LEFT).grid(row=0)
Label(master, text = "Row number of the target cell", justify = LEFT).grid(row=1)
e1 = Entry(master)
e2 = Entry(master)
e1.grid(row=0, column=1)
e2.grid(row=1, column=1)
Button(master, text = "Enter", command = safe).grid(row=3,column=1,sticky=W,pady=4)
mainloop()
Col = e1.get()
Row = e2.get()
break
# Ask if the user wants to change reflectivities into mm.
def safe():
print(e1.get())
CalcQues = e1.get()
master.quit()
master = Tk()
Label(master, text = "Do you want to convert reflectivities [dBZ] into [mm] of rain? Note: only use this").grid(row=0)
Label(master, text = "tool when the provided data has reflectivities in dBZ. Please give the number of your answer: [1] Yes, [2] No and press enter").grid(row=1)
e1 = Entry(master)
e1.grid(row=0, column=1)
Button(master, text = "Enter", command = safe).grid(row=3,column=1,sticky=W,pady=4)
mainloop()
CalcQues = e1.get()
if CalcQues == "1":
def safe():
print(e1.get())
NumMin = e1.get()
master.quit()
master = Tk()
Label(master, text = "What is the temporal resolution of your data (e.g. 5 min. data)? Please give the amount in minutes.").grid(row=0)
e1 = Entry(master)
e1.grid(row=0, column=1)
Button(master, text = "Enter", command = safe).grid(row=3,column=1,sticky=W,pady=4)
mainloop()
NumMin = e1.get()
NumMin = float(NumMin)
else:
print("No conversion will take place.")
########################################################
# It is time to start the 'For Loop'
########################################################
for x in range(0, len(list)):
hdf5filename = list[x]
file = h5py.File(list[x],'r+')
filedata = file['/image1/image_data'][()] # Open "image1" dataset under the root group,
# this dataset consists of the accumulated 5 min precipitation amounts.
if CalcQues == "1":
filedata = 0.5 * filedata - 32
filedata = ((10.**((filedata-23)/16))/(60/NumMin))
if CalcQues == "2":
filedata = filedata * 0.01
basename = os.path.basename(hdf5filename)
basenametxt = os.path.splitext(basename)[0]
print(basenametxt)
# Multiply the data with 0.01 to get mm.
filedata = filedata * 0.01
Value = filedata[Row,Col]
writer.writerow([basenametxt, Value])
print("End of this script.")
if DataQuestion == "3":
########################################################
# Open the radolan radar dataset for Germany.
########################################################
root = Tkinter.Tk()
root.withdraw()
dirpath = tkFileDialog.askdirectory(parent=root, title='Open the main folder with ASCII-files and press OK')
radolanlist = subprocess.check_output(['find',dirpath,'-name','*.asc']).split('\n')[:-1]
Outfile = os.path.join(dirpath,'Results','PixelPrec.csv')
outcsv = open(Outfile,"wb")
writer = csv.writer(outcsv, delimiter = ",")
writer.writerow(['Name','Precipitation [mm]'])
########################################################
# It is time to start the 'For Loop'
########################################################
while True:
def safe():
print(e1.get())
print(e2.get())
Col = e1.get()
Row = e2.get()
master.quit()
master = Tk()
Label(master, text = "Column number of the target cell", justify = LEFT).grid(row=0)
Label(master, text = "Row number of the target cell", justify = LEFT).grid(row=1)
e1 = Entry(master)
e2 = Entry(master)
e1.grid(row=0, column=1)
e2.grid(row=1, column=1)
Button(master, text = "Enter", command = safe).grid(row=3,column=1,sticky=W,pady=4)
mainloop()
Col = e1.get()
Row = e2.get()
break
for x in range(0, len(radolanlist)):
radolanfilename = radolanlist[x]
filedata = np.loadtxt(radolanlist[x], skiprows=6)
basename = os.path.basename(radolanfilename)
basenametxt = os.path.splitext(basename)[0]
print(basenametxt)
Value = filedata[Row,Col]
writer.writerow([basenametxt, Value])
print("End of this script.")
if DataQuestion == "4":
########################################################
# Open the NETCDF-files for the Netherlands. In this case that is the monthly averaged precipitation, but it could also be hourly or five minute data.
########################################################
root = Tkinter.Tk()
root.withdraw()
dirpath = tkFileDialog.askdirectory(parent=root, title='Open the main folder with NETCDF-files and press OK')
list = subprocess.check_output(['find',dirpath,'-name','*.nc']).split('\n')[:-1]
Outfile = os.path.join(dirpath,'Results','PixelPrec.csv')
outcsv = open(Outfile,"wb")
writer = csv.writer(outcsv, delimiter = ",")
writer.writerow(['Name','Precipitation [mm]'])
########################################################
# It is time to start the 'For Loop'
########################################################
while True:
def safe():
print(e1.get())
print(e2.get())
Col = e1.get()
Row = e2.get()
master.quit()
master = Tk()
Label(master, text = "Column number of the target cell", justify = LEFT).grid(row=0)
Label(master, text = "Row number of the target cell", justify = LEFT).grid(row=1)
e1 = Entry(master)
e2 = Entry(master)
e1.grid(row=0, column=1)
e2.grid(row=1, column=1)
Button(master, text = "Enter", command = safe).grid(row=3,column=1,sticky=W,pady=4)
mainloop()
Col = e1.get()
Row = e2.get()
break
for x in range(0, len(list)):
netcdffilename = list[x]
file = Dataset(list[x],'r')
values = file.variables['prediction'][:,:]
# Get the name of the file path and the file itself
dirname = os.path.dirname(netcdffilename)
basename = os.path.basename(netcdffilename)
basenametxt = os.path.splitext(basename)[0]
print(basename)
# The data has to be converted into numpy arrays to make them ready for use.
np_data = np.array(values)
np_data = np_data.flatten()
np_data = np_data[::-1]
New = np_data.reshape(315,266)
New = np.fliplr(New)
Value = New[Row,Col]
writer.writerow([basenametxt, Value])
print("End of this script.")
if DataQuestion == "5":
########################################################
# Open the hdf5-files for the OPERA-dataset of Europe.
########################################################
root = Tkinter.Tk()
root.withdraw()
dirpath = tkFileDialog.askdirectory(parent=root, title='Open the main folder with hdf5-files and press OK')
list = subprocess.check_output(['find',dirpath,'-name','*.h5']).split('\n')[:-1]
Outfile = os.path.join(dirpath,'Results','PixelPrec.csv')
outcsv = open(Outfile,"wb")
writer = csv.writer(outcsv, delimiter = ",")
writer.writerow(['Name','Precipitation [mm]'])
########################################################
# It is time to start the 'For Loop'
########################################################
while True:
def safe():
print(e1.get())
print(e2.get())
Col = e1.get()
Row = e2.get()
master.quit()
master = Tk()
Label(master, text = "Column number of the target cell", justify = LEFT).grid(row=0)
Label(master, text = "Row number of the target cell", justify = LEFT).grid(row=1)
e1 = Entry(master)
e2 = Entry(master)
e1.grid(row=0, column=1)
e2.grid(row=1, column=1)
Button(master, text = "Enter", command = safe).grid(row=3,column=1,sticky=W,pady=4)
mainloop()
Col = e1.get()
Row = e2.get()
break
# Ask if the user wants to change reflectivities into mm.
def safe():
print(e1.get())
CalcQues = e1.get()
master.quit()
master = Tk()
Label(master, text = "Do you want to convert reflectivities [dBZ] into [mm] of rain? Note: only use this").grid(row=0)
Label(master, text = "tool when the provided data has reflectivities in dBZ. Please give the number of your answer: [1] Yes, [2] No and press enter").grid(row=1)
e1 = Entry(master)
e1.grid(row=0, column=1)
Button(master, text = "Enter", command = safe).grid(row=3,column=1,sticky=W,pady=4)
mainloop()
CalcQues = e1.get()
if CalcQues == "1":
def safe():
print(e1.get())
NumMin = e1.get()
master.quit()
master = Tk()
Label(master, text = "What is the temporal resolution of your data (e.g. 5 min. data)? Please give the amount in minutes.").grid(row=0)
e1 = Entry(master)
e1.grid(row=0, column=1)
Button(master, text = "Enter", command = safe).grid(row=3,column=1,sticky=W,pady=4)
mainloop()
NumMin = e1.get()
NumMin = float(NumMin)
else:
print("No conversion will take place.")
########################################################
# It is time to start the 'For Loop'
########################################################
for x in range(0, len(list)):
hdf5filename = list[x]
file = h5py.File(list[x],'r+')
filedata = file['/image1/image_data'][()] # Open "image1" dataset under the root group,
# this dataset consists of the accumulated 5 min precipitation amounts.
if CalcQues == "1":
filedata = 0.5 * filedata - 32
filedata = ((10.**((filedata-23)/16))/(60/NumMin))
if CalcQues == "2":
filedata = filedata * 0.01
basename = os.path.basename(hdf5filename)
basenametxt = os.path.splitext(basename)[0]
print(basenametxt)
# Multiply the data with 0.01 to get mm.
filedata = filedata * 0.01
Value = filedata[Row,Col]
writer.writerow([basenametxt, Value])
print("End of this script.")
if DataQuestion == "6":
########################################################
# Open the hdf5-files of the NASA GPM IMERG High Quality Precipitation level 3 dataset.
########################################################
dirpath = tkFileDialog.askdirectory(parent=root, title='Open the main folder with hdf5-files and press OK')
list = subprocess.check_output(['find',dirpath,'-name','*.HDF5']).split('\n')[:-1]
root = Tkinter.Tk()
root.withdraw()
Outfile = os.path.join(dirpath,'Results','PixelPrec.csv')
outcsv = open(Outfile,"wb")
writer = csv.writer(outcsv, delimiter = ",")
writer.writerow(['Name','Precipitation [mm]'])
########################################################
# It is time to start the 'For Loop'
########################################################
while True:
def safe():
print(e1.get())
print(e2.get())
Col = e1.get()
Row = e2.get()
master.quit()
master = Tk()
Label(master, text = "Column number of the target cell", justify = LEFT).grid(row=0)
Label(master, text = "Row number of the target cell", justify = LEFT).grid(row=1)
e1 = Entry(master)
e2 = Entry(master)
e1.grid(row=0, column=1)
e2.grid(row=1, column=1)
Button(master, text = "Enter", command = safe).grid(row=3,column=1,sticky=W,pady=4)
mainloop()
Col = e1.get()
Row = e2.get()
break
for x in range(0, len(list)):
hdf5filename = list[x]
file = h5py.File(list[x],'r+')
filedata = file['/Grid/HQprecipitation'][()] # Open "image1" dataset under the root group,
# this dataset consists of the accumulated 5 min precipitation amounts.
filedata = filedata * 0.5 # The units are mm/h, while the temporal resolution is 30 min.
# Get the name of the file path and the file itself
dirname = os.path.dirname(hdf5filename)
basename = os.path.basename(hdf5filename)
basenametxt = os.path.splitext(basename)[0]
print(basename)
Value = filedata[Row,Col]
writer.writerow([basenametxt, Value])
print("End of this script.")
if FirstQues == 2:
#########################################################
# Time to read the shapefile
#########################################################
root = Tkinter.Tk()
root.withdraw()
filename = tkFileDialog.askopenfilename(parent=root,filetypes=[("ESRI Shapefile","*.shp"),("all files","*.*")],title='Choose a Shapefile of your study area')
sf = shapefile.Reader(filename)
#########################################################
# Get the projection of the shapefiles
##########################################################
driver = ogr.GetDriverByName('ESRI Shapefile')
dataset = driver.Open(filename)
# from Layer
layer = dataset.GetLayer()
spatialRef = layer.GetSpatialRef()
# from Geometry
feature = layer.GetNextFeature()
geom = feature.GetGeometryRef()
spatialRef = geom.GetSpatialReference()
print(spatialRef)
#########################################################
# Indicate which type of data set will be supplied
#########################################################
def safe():
print(e1.get())
DataQuestion = e1.get()
root2.quit()
root2 = Tk()
root2.title("Indicate which type of dataset will be supplied. Fill out the number of your choice and click on enter.")
Label(root2, text = "1 NLRadarhdf5_NL25", justify = LEFT).grid(row=0)
Label(root2, text = "2 NLRadarhdf5_NL21", justify = LEFT).grid(row=1)
Label(root2, text = "3 DERadar_Radolan", justify = LEFT).grid(row=2)
Label(root2, text = "4 NL KDC data in NETCDF", justify = LEFT).grid(row=3)
Label(root2, text = "5 OPERA - Radar Europe", justify = LEFT).grid(row=4)
Label(root2, text = "6 NASA GPM IMERG_HQprecipitation level 3", justify = LEFT).grid(row=5)
e1 = Entry(root2)
e1.grid(row=2, column=3)
Button(root2, text = "Enter", command = safe).grid(row=3,column=3,sticky=W,pady=4)
mainloop()
DataQuestion = e1.get()
print(DataQuestion)
#########################################################
# Reproject the geometry of the shapefile
#########################################################
# set file names
infile = filename
dirname = os.path.dirname(filename)
basename = os.path.basename(filename)
basenametxt = os.path.splitext(basename)[0]
outfile = os.path.join(dirname, basenametxt+'_Reprojected.shp')
# The projection will be based on the projection of the given data set
if DataQuestion == "1":
ShapefileProj = '+proj=stere +lat_0=90 +lon_0=0.0 +lat_ts=60.0 +a=6378.137 +b=6356.752 +x_0=0 +y_0=0'
if DataQuestion == "2":
ShapefileProj = '+proj=stere +lat_0=90 +lon_0=0.0 +lat_ts=60.0 +a=6378.137 +b=6356.752 +x_0=0 +y_0=0'
if DataQuestion == "3":
ShapefileProj = '+proj=stere +lat_0=90.0 +lat_ts=60.0 +lon_0=10.0 +a=6370040 +b=6370040 +units=m'
if DataQuestion == "4":
ShapefileProj = '+proj=sterea +lat_0=52.15616055555555 +lon_0=5.38763888888889 +k=0.9999079 +x_0=155000 +y_0=463000 +ellps=bessel +units=m +no_defs'
if DataQuestion == "5":
ShapefileProj = '+proj=stere +lat_0=90 +lon_0=0.0 +lat_ts=60.0 +a=6378.137 +b=6356.752 +x_0=0 +y_0=0'
if DataQuestion == "6":
ShapefileProj = '+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs'
subprocess.call(['ogr2ogr', '-t_srs', ShapefileProj, outfile, infile])
#########################################################
# Define the new, reprojected shapefile as sfnew
# We are going to rasterize this shapefile, since the resulting radar raster (after
# rasterizing the hdf5-dataset) should be exactly the same as this raster of this shapefile
#########################################################
sfnew = shapefile.Reader(outfile)
# 1. Define pixel_size and NoData value of new raster
NoData_value = -9999
# Let's ask for the cell size and use that for the xres, yres and pixel_size
def safe():
print(e1.get())
Res = e1.get()
master.quit()
master = Tk()
Label(master, text = "Please give the desired pixel resolution in km or", justify = LEFT).grid(row=0)
Label(master, text = "in degrees, depending on the provided data set.", justify = LEFT).grid(row=1)
e1 = Entry(master)
e1.grid(row=0, column=1)
Button(master, text = "Enter", command = safe).grid(row=3,column=1,sticky=W,pady=4)
mainloop()
Res = e1.get()
Res = float(Res)
if DataQuestion == "3":
Res = Res * 1000
if DataQuestion == "4":
Res = Res * 1000
x_res = Res
y_res = Res
Pixel_size = Res
# 2. Filenames for in- and output
_out = os.path.join(dirname, basenametxt+'_Reprojected.tiff')
# 3. Open Shapefile
driver = ogr.GetDriverByName('ESRI Shapefile')
shapefile = driver.Open(outfile)
source_layer = shapefile.GetLayer()
# Obtain xmin, xmax, ymin and ymax as floats
x_min, x_max, y_min, y_max = source_layer.GetExtent()
# Round the values for xmin, xmax, ymin and ymax (make a rough rounding)
# in order to not get a too small extent. Finally, make integer values of it.
xmin = int(round(x_min, 0) - 1)
xmax = int(round(x_max, 0) + 1)
ymin = int(round(y_min, 0) - 1)
ymax = int(round(y_max, 0) + 1)
# 4. Create Target - TIFF
cols = int( (xmax - xmin) / x_res )
rows = int( (ymax - ymin) / y_res )
# Save raster
# TO DO: Make this an option, it's not necessary to save it in all cases.
_raster = gdal.GetDriverByName('GTiff').Create(_out, cols, rows, 1, gdal.GDT_Byte)
_raster.SetGeoTransform((xmin, x_res, 0, ymax, 0, -y_res))
projection = osr.SpatialReference()
projection.ImportFromProj4(ShapefileProj)
_raster.SetProjection(projection.ExportToWkt())
_band = _raster.GetRasterBand(1)
_band.SetNoDataValue(NoData_value)
# 5. Rasterize
gdal.RasterizeLayer(_raster, [1], source_layer, None, None, [1], ['ALL_TOUCHED=TRUE'])
inraster = _out
########################################################
# Open the dataset
########################################################
if DataQuestion == "1":
########################################################
# Open the hdf5-files for the Netherlands, in this case the NL_25 dataset.
########################################################
dirpath = tkFileDialog.askdirectory(parent=root, title='Open the main folder with hdf5-files and press OK')
list = subprocess.check_output(['find',dirpath,'-name','*.h5']).split('\n')[:-1]
print(dirpath)
# Ask if the user wants to change reflectivities into mm.
def safe():
print(e1.get())
CalcQues = e1.get()
master.quit()
master = Tk()
Label(master, text = "Do you want to convert reflectivities [dBZ] into [mm] of rain? Note: only use this").grid(row=0)
Label(master, text = "tool when the provided data has reflectivities in dBZ. Please give the number of your answer: [1] Yes, [2] No and press enter").grid(row=1)
e1 = Entry(master)
e1.grid(row=0, column=1)
Button(master, text = "Enter", command = safe).grid(row=3,column=1,sticky=W,pady=4)
mainloop()
CalcQues = e1.get()
if CalcQues == "1":
def safe():
print(e1.get())
NumMin = e1.get()
master.quit()
master = Tk()
Label(master, text = "What is the temporal resolution of your data (e.g. 5 min. data)? Please give the amount in minutes.").grid(row=0)
e1 = Entry(master)
e1.grid(row=0, column=1)
Button(master, text = "Enter", command = safe).grid(row=3,column=1,sticky=W,pady=4)
mainloop()
NumMin = e1.get()
NumMin = float(NumMin)
else:
print("No conversion will take place.")
########################################################
# It is time to start the 'For Loop'
########################################################
for x in range(0, len(list)):
hdf5filename = list[x]
file = h5py.File(list[x],'r+')
filedata = file['/image1/image_data'][()] # Open "image1" dataset under the root group,
# this dataset consists of the accumulated 5 min precipitation amounts.
if CalcQues == "1":
filedata = 0.5 * filedata - 32
filedata = ((10.**((filedata-23)/16))/(60/NumMin))
if CalcQues == "2":
filedata = filedata * 0.01
# Get the name of the file path and the file itself
dirname = os.path.dirname(hdf5filename)
basename = os.path.basename(hdf5filename)
basenametxt = os.path.splitext(basename)[0]
print(basename)
#########################################################
# Create a raster from the hdf5 file
#########################################################
# Make a raster out of the hdf5 dataset
# First convert the data into numpy arrays
np_data = np.array(filedata)
# Get the spatial extent of the data
num_cols = float(np_data.shape[1])
num_rows = float(np_data.shape[0])
xmin = 0
xmax = 699
ymin = 0
ymax = -3650 # offset is 3650
xres = (xmax - xmin)/num_cols
yres = (ymax - ymin)/num_rows
# Time to set up the transformation which is necessary to create the raster we want
geotransform = (xmin, xres, 0, ymin, 0, -yres)
# We are going to create the raster with the right coordinate encoding and projection
def array_to_raster(array):
dst_filename = os.path.join(dirpath,'RasterIn', basenametxt+'.tiff')
x_pixels = 700
y_pixels = 765
pixel_size = 1
x_min = 0
y_max = -3650
driver = gdal.GetDriverByName('GTiff')
dataset = driver.Create(
dst_filename,
x_pixels,
y_pixels,
1,
gdal.GDT_Float32, )
dataset.SetGeoTransform((
x_min,
pixel_size,
0,
y_max,
0,
-pixel_size))
projection = osr.SpatialReference()
projection.ImportFromProj4('+proj=stere +lat_0=90 +lon_0=0.0 +lat_ts=60.0 +a=6378.137 +b=6356.752 +x_0=0 +y_0=0')
dataset.SetProjection(projection.ExportToWkt())
dataset.GetRasterBand(1).WriteArray(array)
dataset.FlushCache() # This is the way to write it to the disk
return dataset, dataset.GetRasterBand(1)
array_to_raster(np_data)
rasterfile = os.path.join(dirpath,'RasterIn', basenametxt+'.tiff')
#########################################################
# Time to clip the raster with the rasterized shapefile
#########################################################
# inraster = _out --> This is already defined in the rasterizing of the shapefile.
hdf5raster = rasterfile
outraster = os.path.join(dirpath,'RasterIn', basenametxt+'Reprojected.tiff') # Here, the clip is saved as an ASCII file, but a .tiff extension is also possible.
# Source
src_filename = hdf5raster
src = gdal.Open(src_filename, gdalconst.GA_ReadOnly)
src_proj = src.GetProjection()
src_geotrans = src.GetGeoTransform()
# We want a section of source that matches this:
match_filename = inraster
match_ds = gdal.Open(match_filename, gdalconst.GA_ReadOnly)
match_proj = match_ds.GetProjection()
match_geotrans = match_ds.GetGeoTransform()
wide = match_ds.RasterXSize
high = match_ds.RasterYSize
# Output / destination
dst_filename = outraster
dst = gdal.GetDriverByName('GTiff').Create(dst_filename, wide, high, 1, gdalconst.GDT_Float32)
dst.SetGeoTransform( match_geotrans )
dst.SetProjection( match_proj)
# Do the work. Check whether the pixel resolution is the same as the hdf5 dataset
# resolution. If yes, use a nearest neighbour conversion. If not, use a cubic spline
# conversion for downscaling and averaging for upscaling to get the best possible
# reprojection on the new grid.
if Res == 1:
gdal.ReprojectImage(src, dst, src_proj, match_proj, gdalconst.GRA_NearestNeighbour)
elif Res > 1:
gdal.ReprojectImage(src, dst, src_proj, match_proj, gdalconst.GRA_Average)
else:
gdal.ReprojectImage(src, dst, src_proj, match_proj, gdalconst.GRA_CubicSpline)
# We do have the hdf5 dataset as GeoTiff in the correct raster grid and extent. Now, it's
# time to only keep the pixels that overlap with the rasterized shapefile.
Result = os.path.join(dirpath,'Results', basenametxt+'.tiff')
Catchment = gdal.Open(_out)
xSize = dst.RasterXSize
ySize = dst.RasterYSize
InputBand = dst.ReadAsArray(0,0,xSize,ySize)
if CalcQues == "1":
NDvalue = 0.5 * 255 - 32
NDvalue = ((10.**((NDvalue-23)/16))/(60/NumMin))
InputBand = np.where(InputBand < NDvalue, InputBand, -999)
if CalcQues == "2":
InputBand = np.where(InputBand < 655.35, InputBand, -999)
CatchmentBand = _raster.ReadAsArray(0,0,xSize,ySize)
OutputData = np.where(CatchmentBand > 0, InputBand, -999)
Driver = gdal.GetDriverByName('GTiff')
OutputDataSet = Driver.CreateCopy(Result,dst)
OutputDataSet.GetRasterBand(1).WriteArray(OutputData)
src = None
try:
os.remove(rasterfile)
except WindowsError, e:
print("One file could not be deleted, the tool continues.")
if DataQuestion == "2":
########################################################
# Open the hdf5-files for the Netherlands, in this case NL21 dataset.
########################################################
dirpath = tkFileDialog.askdirectory(parent=root, title='Open the main folder with hdf5-files and press OK')
list = subprocess.check_output(['find',dirpath,'-name','*.h5']).split('\n')[:-1]
print(dirpath)
# Ask if the user wants to change reflectivities into mm.
def safe():
print(e1.get())
CalcQues = e1.get()
master.quit()
master = Tk()