Skip to content

Latest commit

 

History

History
110 lines (95 loc) · 3.36 KB

DATASET.md

File metadata and controls

110 lines (95 loc) · 3.36 KB

Datasets

The overall directory structure should be:

│ACT/
├──cfgs/
├──data/
│   ├──ModelNet/
│   ├──ModelNetFewshot/
│   ├──ScanObjectNN/
│   ├──ShapeNet55-34/
│   ├──shapenetcore_partanno_segmentation_benchmark_v0_normal/
│   ├──Stanford3dDataset_v1.2_Aligned_Version/
│   ├──s3dis/
├──datasets/
├──.......

ModelNet40 Dataset:

│ModelNet/
├──modelnet40_normal_resampled/
│  ├── modelnet40_shape_names.txt
│  ├── modelnet40_train.txt
│  ├── modelnet40_test.txt
│  ├── modelnet40_train_8192pts_fps.dat
│  ├── modelnet40_test_8192pts_fps.dat

ModelNet Few-shot Dataset:

│ModelNetFewshot/
├──5way10shot/
│  ├── 0.pkl
│  ├── ...
│  ├── 9.pkl
├──5way20shot/
│  ├── ...
├──10way10shot/
│  ├── ...
├──10way20shot/
│  ├── ...
  • Download: The data can be downloaded from Point-BERT. We use the same data split as theirs.

ScanObjectNN Dataset:

│ScanObjectNN/
├──main_split/
│  ├── training_objectdataset_augmentedrot_scale75.h5
│  ├── test_objectdataset_augmentedrot_scale75.h5
│  ├── training_objectdataset.h5
│  ├── test_objectdataset.h5
├──main_split_nobg/
│  ├── training_objectdataset.h5
│  ├── test_objectdataset.h5

ShapeNet55/34 Dataset:

│ShapeNet55-34/
├──shapenet_pc_masksurf_with_normal/
│  ├── 02691156-1a04e3eab45ca15dd86060f189eb133.npy
│  ├── 02691156-1a6ad7a24bb89733f412783097373bdc.npy
│  ├── .......
├──ShapeNet-55/
│  ├── train.txt
│  └── test.txt
  • Download: The data can be downloaded from Point-BERT. We use the same data split as theirs.

ShapeNetPart Dataset:

|shapenetcore_partanno_segmentation_benchmark_v0_normal/
├──02691156/
│  ├── 1a04e3eab45ca15dd86060f189eb133.txt
│  ├── .......
│── .......
│──train_test_split/
│──synsetoffset2category.txt

S3DIS Dataset:

|Stanford3dDataset_v1.2_Aligned_Version/
├──Area_1/
│  ├── conferenceRoom_1
│  ├── .......
│── .......
│stanford_indoor3d
│──Area_1_conferenceRoom_1.npy
│──Area_1_office_19.npy

Please prepare the dataset following PointNet: download the Stanford3dDataset_v1.2_Aligned_Version from here, and get the processed stanford_indoor3d with:

cd data_utils
python collect_indoor3d_data.py