You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Before using my own datasets, I decided to train EndoSurf using one of the EndoNeRF's datasets (pulling_soft_tissues). Then, I tried to use my own private datasets using the exact same configurations used to train 'pulling_soft_tissues', but I was not able to obtain good results.
Taking this into account (and after checking that the camera poses and intrinsics were correct and that the scene was inside the unit sphere), I decided to compare the training graphics of both datasets (pulling_soft_tissues and mine). This was what I obtained for:
pulling_soft_tissues:
My private dataset:
I noticed that, in my case, every loss graphic seemed off:
the depth and sdf losses were always at 0
the color loss and loss angle have really high values
eikonal and surf neig losses are weird
etc.
Could you give me any assumptions of what may be happening? Where is the data normalized?
The text was updated successfully, but these errors were encountered:
Excuse me, how can I reconstruct my own data set by training the model? Now I have processed my binocular endoscope video, converted the generated disparity map into tiff format, and there are also json files of camera parameters, but I found that trainer_endosurf.py reads. pkl files. Do I need to serialize the data into PKL files? What should I do? Can you give me some guidance? thank you
Hi thanks for your interest. PKL file is just a dictionary of some numpy arrays. You can modify dataloader to load json files. One thing that is important is that we assume poses are pre-normalized. Therefore it is better to slightly modify preprocess.py to process your files and convert to *.pkl format.
Before using my own datasets, I decided to train EndoSurf using one of the EndoNeRF's datasets (pulling_soft_tissues). Then, I tried to use my own private datasets using the exact same configurations used to train 'pulling_soft_tissues', but I was not able to obtain good results.
Taking this into account (and after checking that the camera poses and intrinsics were correct and that the scene was inside the unit sphere), I decided to compare the training graphics of both datasets (pulling_soft_tissues and mine). This was what I obtained for:
pulling_soft_tissues:
![Captura de ecrã 2024-02-14 115238](https://private-user-images.githubusercontent.com/75215744/304724003-c034183b-3c11-4ea9-8c69-eb5f69d734b1.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzg5NTI4MjUsIm5iZiI6MTczODk1MjUyNSwicGF0aCI6Ii83NTIxNTc0NC8zMDQ3MjQwMDMtYzAzNDE4M2ItM2MxMS00ZWE5LThjNjktZWI1ZjY5ZDczNGIxLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMDclMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjA3VDE4MjIwNVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTY1MzFjOWU2M2JhZmU1MjZhNTI2N2JjNzE4YzQ3OWNmNDg4MzViMTdlYjJlOWE0MmQ1YWI2N2JhZmY5YWQ0ODQmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.42PiGa0RqsL8Qp65XQ5-MA5tDuF4DIOAKRC7gJ-Sx2k)
![Captura de ecrã 2024-02-14 115246](https://private-user-images.githubusercontent.com/75215744/304724015-840df38b-b5f5-4966-809f-594c3661ff5d.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzg5NTI4MjUsIm5iZiI6MTczODk1MjUyNSwicGF0aCI6Ii83NTIxNTc0NC8zMDQ3MjQwMTUtODQwZGYzOGItYjVmNS00OTY2LTgwOWYtNTk0YzM2NjFmZjVkLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMDclMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjA3VDE4MjIwNVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWQwZDVkMTI5ZGRkYTRjMDc0ZmQ4ZDZhY2ZlMjM4OTI3YjY1ZjQzY2EyNjA1MzU4OWQyZjI1ZTdjODFhMGYxYTImWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.V2w_bY-078ktAu02FdC5wYA3QbXKtCr5M9-wztzBqGs)
My private dataset:
![Captura de ecrã 2024-02-14 101623](https://private-user-images.githubusercontent.com/75215744/304723571-35c02813-c180-46db-b527-2cf429aba42b.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzg5NTI4MjUsIm5iZiI6MTczODk1MjUyNSwicGF0aCI6Ii83NTIxNTc0NC8zMDQ3MjM1NzEtMzVjMDI4MTMtYzE4MC00NmRiLWI1MjctMmNmNDI5YWJhNDJiLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMDclMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjA3VDE4MjIwNVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTAwODY0ZGVmODcwMTMxNjU2YzNiNWRmMWVmYzVmNjUxZGRmOTEwMWEzZWRkYWEyZWU1ODExZjgzZTBiYjc0YzQmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.iGpvf4MeqoONM3gQKoRGXvAJDWCdnHRisVDdGbtuLxI)
![Captura de ecrã 2024-02-14 101630](https://private-user-images.githubusercontent.com/75215744/304723580-7ea21774-5e9b-4d4c-bf67-5cc8c0607487.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mzg5NTI4MjUsIm5iZiI6MTczODk1MjUyNSwicGF0aCI6Ii83NTIxNTc0NC8zMDQ3MjM1ODAtN2VhMjE3NzQtNWU5Yi00ZDRjLWJmNjctNWNjOGMwNjA3NDg3LnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNTAyMDclMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjUwMjA3VDE4MjIwNVomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPWRkMThhOGE3ODZhNGZlNjFlNDFiNWE2NDNmZGU0ODY3OGUzMDdjYmFhMWVlOTk4MWVmMWQ4NDJkNDQzOWMyYzMmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.rNI3CEE4Rtcip9LUpVGuHZY_u_se-JWdDm1tMasWar8)
I noticed that, in my case, every loss graphic seemed off:
Could you give me any assumptions of what may be happening? Where is the data normalized?
The text was updated successfully, but these errors were encountered: