-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune.py
310 lines (272 loc) · 9.84 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import datetime
import functools
import json
import os
import re
import sys
from typing import List
import fire
import matplotlib.pyplot as plt
import numpy as np
import torch
import transformers
import yaml
from datasets import load_dataset
num_of_gpus = torch.cuda.device_count()
print("num_of_gpus:", num_of_gpus)
os.system("python -m bitsandbytes")
from peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
set_peft_model_state_dict,
)
try:
from peft import prepare_model_for_int8_training
except:
from peft import prepare_model_for_kbit_training
from transformers import CodeLlamaTokenizer, LlamaForCausalLM, LlamaTokenizer, AutoTokenizer, AutoModelForCausalLM
from src.data.dataset import BaseDataset, DynamicTransformDataset
from src.training.callbacks import UpdateEpochCallback, GPUUsageLogger
from src.utils.config_loader import Config
from src.utils.prompter import Prompter
def train(
model_config: str,
dataloader_config: str = None,
):
with open(model_config, "r") as f:
config_dict = yaml.safe_load(f)
if dataloader_config:
with open(dataloader_config, "r") as f:
config_dict.update(yaml.safe_load(f))
cfg = Config(**config_dict)
cfg.save_file(cfg)
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
print(cfg)
assert (
cfg.base_model
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
gradient_accumulation_steps = cfg.batch_size // cfg.micro_batch_size
prompter = Prompter(cfg.prompt_template_name)
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
use_wandb = len(cfg.wandb_project) > 0 or (
"WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
)
print("use_wandb:", use_wandb)
if len(cfg.wandb_project) > 0:
os.environ["WANDB_PROJECT"] = cfg.wandb_project
if len(cfg.wandb_watch) > 0:
os.environ["WANDB_WATCH"] = cfg.wandb_watch
if len(cfg.wandb_log_model) > 0:
os.environ["WANDB_LOG_MODEL"] = cfg.wandb_log_model
print(cfg.wandb_project, cfg.wandb_watch, cfg.wandb_log_model)
print("device_map:", device_map)
if re.search("Llama-3", cfg.base_model):
model = AutoModelForCausalLM.from_pretrained(
cfg.base_model,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map=device_map,
)
else:
model = LlamaForCausalLM.from_pretrained(
cfg.base_model,
load_in_8bit=True,
torch_dtype=torch.float16,
device_map=device_map,
)
if re.search("CodeLlama", cfg.base_model):
tokenizer = CodeLlamaTokenizer.from_pretrained(cfg.base_model)
elif re.search("Llama-3", cfg.base_model):
tokenizer = AutoTokenizer.from_pretrained(cfg.base_model)
else:
tokenizer = LlamaTokenizer.from_pretrained(cfg.base_model)
tokenizer.pad_token_id = (
0
)
tokenizer.padding_side = "left"
try:
model = prepare_model_for_int8_training(model)
except:
model = prepare_model_for_kbit_training(model, 8)
config = LoraConfig(
r=cfg.lora_r,
lora_alpha=cfg.lora_alpha,
target_modules=cfg.lora_target_modules,
lora_dropout=cfg.lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config)
if cfg.train_data_path.endswith(
".json"
) or cfg.train_data_path.endswith(".jsonl"):
if not cfg.use_valid_set:
data = load_dataset("json", data_files=cfg.train_data_path)
else:
data = load_dataset(
"json",
data_files={
"train": cfg.train_data_path,
"validation": cfg.valid_data_path
},
)
else:
data = load_dataset(cfg.train_data_path)
def calculate_statistics(arr):
mean = np.mean(arr)
median = np.median(arr)
std = np.std(arr)
min_val = np.min(arr)
max_val = np.max(arr)
return {
"Mean": mean,
"Median": median,
"Standard Deviation": std,
"Minimum": min_val,
"Maximum": max_val,
}
plotting = False
dataset_types = (
["train", "validation"] if "validation" in data else ["train"]
)
token_length_list = {k: [] for k in dataset_types}
for dataset_type in dataset_types:
for data_dict in data[dataset_type]:
length = 0
for j in ["output", "instruction", "input"]:
length += len(tokenizer.tokenize(data_dict[j]))
token_length_list[dataset_type].append(length)
print(calculate_statistics(np.array(token_length_list[dataset_type])))
if plotting:
def plot_histogram(dic):
for k, v in dic.items():
plt.hist(v, bins="auto", label=k)
plt.title(f"Dataset token length")
plt.xlabel("token length")
plt.ylabel("Frequency")
plt.grid()
plt.legend()
plt.show()
plot_histogram(token_length_list)
if cfg.resume_from_checkpoint:
checkpoint_name = os.path.join(
cfg.resume_from_checkpoint, "pytorch_model.bin"
)
if not os.path.exists(checkpoint_name):
checkpoint_name = os.path.join(
cfg.resume_from_checkpoint, "adapter_model.bin"
)
cfg.resume_from_checkpoint = (
False
)
if os.path.exists(checkpoint_name):
print(f"Restarting from {checkpoint_name}")
adapters_weights = torch.load(checkpoint_name)
set_peft_model_state_dict(model, adapters_weights)
else:
print(f"Checkpoint {checkpoint_name} not found")
model.print_trainable_parameters()
if cfg.val_set_size > 0 and not cfg.use_valid_set:
train_val = data["train"].train_test_split(
test_size=cfg.val_set_size, shuffle=True, seed=42
)
train_data = (
BaseDataset(train_val["train"], tokenizer, prompter, cfg)
if not dataloader_config
else DynamicTransformDataset(
train_val["train"], tokenizer, prompter, cfg
)
)
val_data = (
BaseDataset(train_val["test"], tokenizer, prompter, cfg)
if not dataloader_config
else DynamicTransformDataset(
train_val["test"], tokenizer, prompter, cfg
)
)
elif cfg.use_valid_set:
train_data = (
BaseDataset(data["train"], tokenizer, prompter, cfg)
if not dataloader_config
else DynamicTransformDataset(
data["train"], tokenizer, prompter, cfg
)
)
val_data = (
BaseDataset(data["validation"], tokenizer, prompter, cfg)
if not dataloader_config
else DynamicTransformDataset(
data["validation"], tokenizer, prompter, cfg
)
)
cfg.val_set_size = len(data["validation"])
else:
train_data = (
BaseDataset(data["train"], tokenizer, prompter, cfg)
if not dataloader_config
else DynamicTransformDataset(
data["train"], tokenizer, prompter, cfg
)
)
val_data = None
if cfg.saved_sample_data:
selected_samples = [
dict(sample)
for sample in data["train"].select(range(cfg.saved_sample_data))
]
if not os.path.exists(cfg.output_dir):
os.mkdir(cfg.output_dir)
with open(os.path.join(cfg.output_dir, "sample_data.json"), "w") as f:
json.dump(selected_samples, f, indent=4)
if not ddp and torch.cuda.device_count() > 1:
model.is_parallelizable = True
model.model_parallel = True
trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=transformers.TrainingArguments(
per_device_train_batch_size=cfg.micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=cfg.warmup_steps,
num_train_epochs=cfg.num_epochs,
learning_rate=cfg.learning_rate,
fp16=True,
logging_steps=10,
optim="adamw_torch",
evaluation_strategy=cfg.evaluation_strategy
if cfg.val_set_size > 0
else "no",
save_strategy=cfg.evaluation_strategy,
eval_steps=249 if cfg.val_set_size > 0 else None,
save_steps=249,
output_dir=cfg.output_dir,
save_total_limit=cfg.save_total_limit,
load_best_model_at_end=True if cfg.val_set_size > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
group_by_length=cfg.group_by_length,
report_to="wandb" if use_wandb else "tensorboard",
run_name=cfg.wandb_run_name if use_wandb else None,
),
data_collator=transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
callbacks=[UpdateEpochCallback, GPUUsageLogger],
)
model.config.use_cache = False
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
with torch.autocast("cuda"):
trainer.train(resume_from_checkpoint=cfg.resume_from_checkpoint)
model.save_pretrained(cfg.output_dir)
print(
"\n If there's a warning about missing keys above, please disregard :)"
)
if __name__ == "__main__":
fire.Fire(train)