-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
435 lines (401 loc) · 15.2 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
import gc
import json
import os
import re
import sys
import fire
import gradio as gr
import torch
import transformers
import yaml
from peft import PeftModel
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
from tqdm import tqdm
from transformers import (
CodeLlamaTokenizer,
GenerationConfig,
LlamaForCausalLM,
LlamaTokenizer,
AutoTokenizer,
AutoModelForCausalLM,
)
from src.utils.config_loader import Config
from src.utils.callbacks import Iteratorize, Stream
from src.utils.prompter import Prompter
from src.utils.response_parser import (
get_predictions_labels_search,
get_predictions_labels_split,
)
from src.utils.plot import scatter_hist
if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"
try:
if torch.backends.mps.is_available():
device = "mps"
except:
pass
def main(
model_config: str,
dataloader_config: str = None,
):
with open(model_config, "r") as f:
config_dict = yaml.safe_load(f)
if dataloader_config:
with open(dataloader_config, "r") as f:
config_dict.update(yaml.safe_load(f))
cfg = Config(**config_dict)
cfg.save_file(cfg)
base_model = cfg.base_model or os.environ.get("BASE_MODEL", "")
assert (
base_model
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
prompter = Prompter(cfg.prompt_template_name)
if re.search("CodeLlama", cfg.base_model):
tokenizer = CodeLlamaTokenizer.from_pretrained(cfg.base_model)
elif re.search("Llama-3", cfg.base_model):
tokenizer = AutoTokenizer.from_pretrained(cfg.base_model)
else:
tokenizer = LlamaTokenizer.from_pretrained(cfg.base_model)
summary_file = os.path.join(cfg.output_dir, "summary.csv")
error_file = os.path.join(cfg.output_dir, "errors.txt")
if cfg.generate_for_all_checkpoints == 0:
lora_weights_list = [cfg.lora_weights]
output_dir_list = [cfg.output_dir]
else:
lora_weights_list = [
os.path.join(cfg.lora_weights, x)
for x in os.listdir(cfg.lora_weights)
if os.path.isdir(os.path.join(cfg.lora_weights, x))
and "checkpoint" in x
]
lora_weights_list = sorted(
lora_weights_list,
key=lambda x: int(re.search("checkpoint-(\d+)", x).group(1)),
)
output_dir_list = lora_weights_list
for lora_weights, output_dir in zip(lora_weights_list, output_dir_list):
try:
del model
gc.collect()
torch.cuda.empty_cache()
except:
pass
if device == "cuda":
if re.search("Llama-3", base_model):
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=cfg.load_8bit,
torch_dtype=torch.float16,
device_map="auto",
)
else:
model = LlamaForCausalLM.from_pretrained(
base_model,
load_in_8bit=cfg.load_8bit,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
)
elif device == "mps":
model = AutoModelForCausalLM.from_pretrained(
base_model,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = AutoModelForCausalLM.from_pretrained(
base_model, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
)
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
if re.search("CodeLlama", base_model) or re.search("Llama-2", base_model):
model.config.bos_token_id = 1
model.config.eos_token_id = 2
if not cfg.load_8bit:
model.half()
model = model.bfloat16()
model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
def evaluate(
instruction,
input=None,
temperature=cfg.temperature,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=1024,
stream_output=False,
**kwargs,
):
prompt = prompter.generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
if cfg.do_sample:
generation_config = GenerationConfig(
do_sample=cfg.do_sample,
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
pad_token_id = tokenizer.pad_token_id,
**kwargs,
)
else:
generation_config = GenerationConfig(
do_sample=cfg.do_sample,
pad_token_id = tokenizer.pad_token_id,
**kwargs,
)
generate_params = {
"input_ids": input_ids,
"generation_config": generation_config,
"return_dict_in_generate": True,
"output_scores": True,
"max_new_tokens": max_new_tokens,
}
if stream_output:
def generate_with_callback(callback=None, **kwargs):
kwargs.setdefault(
"stopping_criteria",
transformers.StoppingCriteriaList(),
)
kwargs["stopping_criteria"].append(
Stream(callback_func=callback)
)
with torch.no_grad():
model.generate(**kwargs)
def generate_with_streaming(**kwargs):
return Iteratorize(
generate_with_callback, kwargs, callback=None
)
with generate_with_streaming(**generate_params) as generator:
for output in generator:
decoded_output = tokenizer.decode(output)
if output[-1] in [tokenizer.eos_token_id]:
break
yield prompter.get_response(decoded_output)
return
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
yield prompter.get_response(output)
if cfg.use_valid_set:
with open(cfg.valid_data_path, "r") as f:
valid_dataset = json.load(f)
if not cfg.do_sample:
file_name = os.path.join(
output_dir, "responses_validation.txt"
)
else:
reg_pattern = re.compile(
"responses_validation_temp(\d+\.*\d*)_v(\d+).txt"
)
d = (
max(
[
int(reg_pattern.search(x).group(2))
for x in os.listdir(output_dir)
if reg_pattern.search(x)
]
)
+ 1
)
file_name = os.path.join(
output_dir,
f"responses_validation_temp{cfg.temperature}_v{d}.txt",
)
if os.path.exists(file_name):
continue
f_out = open(file_name, "w")
pbar = tqdm(valid_dataset)
for data in pbar:
output = " ".join(
x
for x in evaluate(
instruction=data["instruction"],
input=data["input"],
)
)
f_out.write(output)
f_out.write("\n")
f_out.close()
with open(cfg.test_data_path, "r") as f:
test_dataset = json.load(f)
if not cfg.do_sample:
file_name = os.path.join(output_dir, "responses.txt")
else:
reg_pattern = re.compile("responses_temp(\d+\.*\d*)_v(\d+).txt")
d = (
max(
[
int(reg_pattern.search(x).group(2))
for x in os.listdir(output_dir)
if reg_pattern.search(x)
]
)
+ 1
)
file_name = os.path.join(
output_dir, f"responses_temp{cfg.temperature}_v{d}.txt"
)
f_out = open(file_name, "w")
pbar = tqdm(test_dataset)
for data in pbar:
output = " ".join(
x
for x in evaluate(
instruction=data["instruction"],
input=data["input"],
)
)
f_out.write(output)
f_out.write("\n")
f_out.close()
f_error_out = open(error_file, "w")
valid_results = {}
test_results = {}
valid_best_r2 = -100000000
test_best_r2 = 0
valid_best_r2_checkpoint = ""
count_not_equal = 0
for lora_weights, output_dir in zip(lora_weights_list, output_dir_list):
if cfg.use_valid_set:
valid_results[lora_weights] = []
file_name = os.path.join(output_dir, "responses_validation.txt")
try:
if cfg.parsing_pattern == "search":
predictions, labels = get_predictions_labels_search(
file_name,
cfg.valid_data_path,
reg_patterns=cfg.properties,
numerical=True,
)
elif cfg.parsing_pattern == "split":
predictions, labels = get_predictions_labels_split(
file_name,
cfg.valid_data_path,
split_pattern="<MASK_(?:\d+)>",
numerical=True,
)
predictions_merged = []
labels_merged = []
for i, (pred, label) in enumerate(zip(predictions, labels)):
if len(pred) != len(label):
count_not_equal += 1
f_error_out.write(
f"{lora_weights}, label-prediction count mismatch ({i}-th sample, preds:{pred}, labels:{label})\n"
)
continue
predictions_merged += pred
labels_merged += label
valid_results[lora_weights].append(
r2_score(labels_merged, predictions_merged)
)
valid_results[lora_weights].append(
mean_squared_error(labels_merged, predictions_merged) ** 0.5
)
valid_results[lora_weights].append(
mean_absolute_error(labels_merged, predictions_merged)
)
if valid_best_r2 < valid_results[lora_weights][0]:
valid_best_r2 = valid_results[lora_weights][0]
valid_best_r2_checkpoint = lora_weights
scatter_file = os.path.join(output_dir, "validation_scatter_plot.png")
scatter_hist(labels_merged, predictions_merged, "label", "prediction", title = f"R2: {r2_score(labels_merged, predictions_merged)}", file_name = scatter_file)
except Exception as e:
f_error_out.write(f"{lora_weights}:\n{e}\n")
valid_results[lora_weights] += ["ERROR", "ERROR", "ERROR"]
else:
valid_results[lora_weights] = [0, 0, 0]
valid_best_r2_checkpoint = lora_weights
test_results[lora_weights] = []
file_name = os.path.join(output_dir, "responses.txt")
try:
if cfg.parsing_pattern == "search":
predictions, labels = get_predictions_labels_search(
file_name,
cfg.test_data_path,
reg_patterns=cfg.properties,
numerical=True,
)
elif cfg.parsing_pattern == "split":
predictions, labels = get_predictions_labels_split(
file_name,
cfg.test_data_path,
split_pattern="<MASK_(?:\d+)>",
numerical=True,
)
except Exception as e:
f_error_out.write(f"{lora_weights}:\n{e}\n")
test_results[lora_weights] += ["ERROR", "ERROR", "ERROR"]
continue
predictions_merged = []
labels_merged = []
for i, (pred, label) in enumerate(zip(predictions, labels)):
if len(pred) != len(label):
count_not_equal += 1
f_error_out.write(
f"{lora_weights}, label-prediction count mismatch ({i}-th sample, preds:{pred}, labels:{label})\n"
)
continue
predictions_merged += pred
labels_merged += label
test_results[lora_weights].append(
r2_score(labels_merged, predictions_merged)
)
test_results[lora_weights].append(
mean_squared_error(labels_merged, predictions_merged) ** 0.5
)
test_results[lora_weights].append(
mean_absolute_error(labels_merged, predictions_merged)
)
scatter_file = os.path.join(output_dir, "test_scatter_plot.png")
scatter_hist(labels_merged, predictions_merged, "label", "prediction", title = f"R2: {r2_score(labels_merged, predictions_merged)}", file_name = scatter_file)
f_error_out.close()
f_out = open(summary_file, "w")
f_out.write(
"checkpoint,valid R2,valid MSE,valid MAE,test R2,test MSE,test MAE\n"
)
for lora_weights in lora_weights_list:
single_valid_results = ",".join(
str(x) for x in valid_results[lora_weights]
)
single_test_results = ",".join(
str(x) for x in test_results[lora_weights]
)
f_out.write(
f"{lora_weights},{single_valid_results},{single_test_results}\n"
)
f_out.close()
print(
"best model & valid r2 & test r2:",
lora_weights,
valid_best_r2,
test_results[valid_best_r2_checkpoint][0],
)
if __name__ == "__main__":
fire.Fire(main)