-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdpo_mixtral.py
374 lines (330 loc) · 12.3 KB
/
dpo_mixtral.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
"""
Example Usage:
accelerate launch finetuning/dpo_mixtral.py --model_name_or_path=<your_model_name> --model_type='plain' --output_dir=<output_directory> --max_length 4096 --data_file=<path_to_training_data> --run_name <experiment_name> --warmup_steps 50 --gradient_accumulation_steps 8 --num_train_epochs 2 --report_to='wandb'
"""
# Adapted from: https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama_2/scripts/dpo_llama2.py
# 0. imports
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
import torch
from datasets import Dataset, load_dataset
from peft import (
LoraConfig,
PeftModel,
AutoPeftModelForCausalLM,
prepare_model_for_kbit_training,
)
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
HfArgumentParser,
TrainingArguments,
BitsAndBytesConfig,
deepspeed,
)
from trl import DPOTrainer
# Define and parse arguments.
@dataclass
class ScriptArguments:
"""
The arguments for the DPO training script.
"""
# data parameters
beta: Optional[float] = field(
default=0.1, metadata={"help": "the beta parameter for DPO loss"}
)
# training parameters
model_name_or_path: Optional[str] = field(
default="../sft/results/final_checkpoint",
metadata={"help": "the location of the SFT model name or path"},
)
tokenizer: Optional[str] = field(
default=None, metadata={"help": "path to tokenizer"}
)
model_type: Optional[str] = field(
default="plain",
metadata={"help": "the type of the model: plain, merge, or peft"},
)
adapter: Optional[str] = field(
default="", metadata={"help": "path to peft adaptor"}
)
learning_rate: Optional[float] = field(
default=5e-4, metadata={"help": "optimizer learning rate"}
)
lr_scheduler_type: Optional[str] = field(
default="cosine", metadata={"help": "the lr scheduler type"}
)
warmup_steps: Optional[int] = field(
default=100, metadata={"help": "the number of warmup steps"}
)
weight_decay: Optional[float] = field(
default=0.05, metadata={"help": "the weight decay"}
)
optimizer_type: Optional[str] = field(
default="paged_adamw_32bit", metadata={"help": "the optimizer type"}
)
per_device_train_batch_size: Optional[int] = field(
default=1, metadata={"help": "train batch size per device"}
)
per_device_eval_batch_size: Optional[int] = field(
default=1, metadata={"help": "eval batch size per device"}
)
gradient_accumulation_steps: Optional[int] = field(
default=16, metadata={"help": "the number of gradient accumulation steps"}
)
gradient_checkpointing: Optional[bool] = field(
default=True, metadata={"help": "whether to use gradient checkpointing"}
)
lora_alpha: Optional[float] = field(
default=16, metadata={"help": "the lora alpha parameter"}
)
lora_dropout: Optional[float] = field(
default=0.05, metadata={"help": "the lora dropout parameter"}
)
lora_r: Optional[int] = field(default=8, metadata={"help": "the lora r parameter"})
max_prompt_length: Optional[int] = field(
default=4096, metadata={"help": "the maximum prompt length"}
)
max_length: Optional[int] = field(
default=8192, metadata={"help": "the maximum sequence length"}
)
num_train_epochs: Optional[int] = field(
default=1, metadata={"help": "max number of training steps"}
)
max_steps: Optional[int] = field(
default=-1, metadata={"help": "max number of training steps"}
)
logging_steps: Optional[int] = field(
default=1, metadata={"help": "the logging frequency"}
)
save_steps: Optional[int] = field(
default=500, metadata={"help": "the saving frequency"}
)
eval_steps: Optional[int] = field(
default=100, metadata={"help": "the evaluation frequency"}
)
output_dir: Optional[str] = field(
default="./results", metadata={"help": "the output directory"}
)
run_name: Optional[str] = field(
default="dpo_mixtral", metadata={"help": "the name of the run"}
)
data_file: Optional[str] = field(
default="/nlp/scr/zyanzhe/Maple/matplotlib_qa_all_preference_v0_6K.csv",
metadata={"help": "data_file"},
)
log_freq: Optional[int] = field(
default=1, metadata={"help": "the logging frequency"}
)
# instrumentation
sanity_check: Optional[bool] = field(
default=False, metadata={"help": "only train on 1000 samples"}
)
report_to: Optional[str] = field(
default="wandb",
metadata={
"help": 'The list of integrations to report the results and logs to. Supported platforms are `"azure_ml"`,'
'`"comet_ml"`, `"mlflow"`, `"neptune"`, `"tensorboard"`,`"clearml"` and `"wandb"`. '
'Use `"all"` to report to all integrations installed, `"none"` for no integrations.'
},
)
# debug argument for distributed training
ignore_bias_buffers: Optional[bool] = field(
default=False,
metadata={
"help": "fix for DDP issues with LM bias/mask buffers - invalid scalar type,`inplace operation. See"
"https://github.com/huggingface/transformers/issues/22482#issuecomment-1595790992"
},
)
def get_stack_exchange_paired(
data_file,
data_dir,
sanity_check: bool = False,
cache_dir: str = None,
num_proc=24,
) -> Dataset:
"""Load the stack-exchange-paired dataset from Hugging Face and convert it to the necessary format.
The dataset is converted to a dictionary with the following structure:
{
'prompt': List[str],
'chosen': List[str],
'rejected': List[str],
}
"""
if data_dir == "training":
# dataset = load_dataset("csv", data_files=data_file, split="train[:95%]")
dataset = load_dataset("csv", data_files=data_file, split="train")
elif data_dir == "evaluation":
dataset = load_dataset("csv", data_files=data_file, split="train[95%:]")
else:
dataset = None
original_columns = dataset.column_names
if sanity_check:
dataset = dataset.select(range(min(len(dataset), 1000)))
def return_prompt_and_responses(samples) -> Dict[str, str]:
return {
"prompt": samples["query"],
"chosen": samples["good"],
"rejected": samples["bad"],
}
return dataset.map(
return_prompt_and_responses,
batched=True,
num_proc=num_proc,
remove_columns=original_columns,
)
def train():
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
# 1. load a pretrained model
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
)
device_map = None
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} if ddp else None
device = (
torch.device(f"cuda:{int(os.environ.get('LOCAL_RANK') or 0)}")
if ddp
else torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
)
tokenizer_path = (
script_args.tokenizer
if script_args.tokenizer
else script_args.model_name_or_path
)
if script_args.model_type == "plain":
model = AutoModelForCausalLM.from_pretrained(
script_args.model_name_or_path,
device_map=device_map,
torch_dtype=torch.float16,
quantization_config=bnb_config,
attn_implementation="flash_attention_2",
)
elif script_args.model_type == "merge":
model = AutoPeftModelForCausalLM.from_pretrained(
script_args.adapter, device_map="cpu", torch_dtype=torch.float16
)
model = model.merge_and_unload()
# model = model.to(device)
merged_checkpoint = os.path.join(script_args.adapter, "final_merged_checkpoint")
model.save_pretrained(merged_checkpoint)
model = AutoModelForCausalLM.from_pretrained(
merged_checkpoint,
device_map=device_map,
torch_dtype=torch.float16,
quantization_config=bnb_config,
attn_implementation="flash_attention_2",
)
elif script_args.model_type == "peft":
model = AutoModelForCausalLM.from_pretrained(
script_args.model_name_or_path,
device_map=device_map,
torch_dtype=torch.float16,
quantization_config=bnb_config,
attn_implementation="flash_attention_2",
)
model = PeftModel.from_pretrained(model, script_args.adapter)
else:
raise NotImplementedError
model.config.use_cache = False
if script_args.ignore_bias_buffers:
# torch distributed hack
model._ddp_params_and_buffers_to_ignore = [
name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool
]
# model ref can be another model.
"""
model_ref = AutoModelForCausalLM.from_pretrained(
script_args.model_name_or_path,
low_cpu_mem_usage=True,
torch_dtype=torch.float16,
load_in_4bit=True
)
"""
model_ref = None
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
tokenizer.pad_token = tokenizer.eos_token
# 2. Load the Stack-exchange paired dataset
train_dataset = get_stack_exchange_paired(
data_file=script_args.data_file,
data_dir="training",
sanity_check=script_args.sanity_check,
)
train_dataset = train_dataset.filter(
lambda x: len(tokenizer(x["prompt"] + x["chosen"]).input_ids)
<= script_args.max_length
and len(tokenizer(x["prompt"] + x["chosen"]).input_ids)
<= script_args.max_length
)
# 3. Load evaluation dataset
eval_dataset = get_stack_exchange_paired(
data_file=script_args.data_file, data_dir="evaluation", sanity_check=True
)
eval_dataset = eval_dataset.filter(
lambda x: len(tokenizer(x["prompt"] + x["chosen"]).input_ids)
<= script_args.max_length
and len(tokenizer(x["prompt"] + x["chosen"]).input_ids)
<= script_args.max_length
)
# 4. initialize training arguments:
training_args = TrainingArguments(
per_device_train_batch_size=script_args.per_device_train_batch_size,
per_device_eval_batch_size=script_args.per_device_eval_batch_size,
num_train_epochs=script_args.num_train_epochs,
# if not -1, will override epochs
max_steps=script_args.max_steps,
logging_steps=script_args.logging_steps,
save_steps=script_args.save_steps,
gradient_accumulation_steps=script_args.gradient_accumulation_steps,
gradient_checkpointing=script_args.gradient_checkpointing,
ddp_find_unused_parameters=False,
learning_rate=script_args.learning_rate,
evaluation_strategy="steps",
eval_steps=script_args.eval_steps,
output_dir=script_args.output_dir,
report_to=script_args.report_to,
lr_scheduler_type=script_args.lr_scheduler_type,
warmup_steps=script_args.warmup_steps,
optim=script_args.optimizer_type,
bf16=True,
tf32=True,
remove_unused_columns=False,
run_name=script_args.run_name,
)
peft_config = LoraConfig(
r=script_args.lora_r,
lora_alpha=script_args.lora_alpha,
lora_dropout=script_args.lora_dropout,
target_modules=["q_proj", "v_proj"],
bias="none",
task_type="CAUSAL_LM",
)
if script_args.model_type == "peft":
peft_config = None
# 5. initialize the DPO trainer
dpo_trainer = DPOTrainer(
model,
model_ref,
args=training_args,
beta=script_args.beta,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
peft_config=peft_config,
max_prompt_length=script_args.max_prompt_length,
max_length=script_args.max_length,
)
# 6. train
dpo_trainer.train()
dpo_trainer.save_model(script_args.output_dir)
# 7. save
output_dir = os.path.join(script_args.output_dir, "final_checkpoint")
dpo_trainer.model.save_pretrained(output_dir)
if __name__ == "__main__":
train()