-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathoptions.py
298 lines (259 loc) · 20.5 KB
/
options.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import argparse
class options_classification(object):
def __init__(self):
# Handle command line arguments
self.parser = argparse.ArgumentParser(
description='Run a complete training pipeline. Optionally, a JSON configuration file can be used, to overwrite command-line arguments.')
## Run from config file
self.parser.add_argument('--config', dest='config_filepath',
help='Configuration .json file (optional). Overwrites existing command-line args!')
# gpt4ts
self.parser.add_argument('--patch_size', type=int, default=64, help='patch_size')
self.parser.add_argument('--stride', type=int, default=64, help='stride')
## Run from command-line arguments
# I/O
self.parser.add_argument('--output_dir', default='./output',
help='Root output directory. Must exist. Time-stamped directories will be created inside.')
self.parser.add_argument('--data_dir', default='./datasets_classification',
help='Data directory')
self.parser.add_argument('--load_model',
help='Path to pre-trained model.')
self.parser.add_argument('--resume', action='store_true',
help='If set, will load `starting_epoch` and state of optimizer, besides model weights.')
self.parser.add_argument('--change_output', action='store_true',
help='Whether the loaded model will be fine-tuned on a different task (necessitating a different output layer)')
self.parser.add_argument('--save_all', action='store_true',
help='If set, will save model weights (and optimizer state) for every epoch; otherwise just latest')
self.parser.add_argument('--name', dest='experiment_name', default='',
help='A string identifier/name for the experiment to be run - it will be appended to the output directory name, before the timestamp')
self.parser.add_argument('--comment', type=str, default='', help='A comment/description of the experiment')
self.parser.add_argument('--no_timestamp', action='store_true',
help='If set, a timestamp will not be appended to the output directory name')
self.parser.add_argument('--records_file', default='./records.xls',
help='Excel file keeping all records of experiments')
# system
self.parser.add_argument('--console', action='store_true',
help="Optimize printout for console output; otherwise for file")
self.parser.add_argument('--print_interval', type=int, default=1,
help='Print batch info every this many batches')
self.parser.add_argument('--gpu', type=str, default='0',
help='GPU index, -1 for CPU')
self.parser.add_argument('--n_proc', type=int, default=-1,
help='Number of processes for data loading/preprocessing. By default, equals num. of available cores.')
self.parser.add_argument('--num_workers', type=int, default=0,
help='dataloader threads. 0 for single-thread.')
self.parser.add_argument('--seed',
help='Seed used for splitting sets. None by default, set to an integer for reproducibility')
# dataset
self.parser.add_argument('--limit_size', type=float, default=None,
help="Limit dataset to specified smaller random sample, e.g. for rapid debugging purposes. "
"If in [0,1], it will be interpreted as a proportion of the dataset, "
"otherwise as an integer absolute number of samples")
self.parser.add_argument('--test_only', choices={'testset', 'fold_transduction'},
help='If set, no training will take place; instead, trained model will be loaded and evaluated on test set')
self.parser.add_argument('--data_class', type=str, default='tsra',
help="Which type of data should be processed.")
self.parser.add_argument('--labels', type=str,
help="In case a dataset contains several labels (multi-task), "
"which type of labels should be used in regression or classification, i.e. name of column(s).")
self.parser.add_argument('--test_from',
help='If given, will read test IDs from specified text file containing sample IDs one in each row')
self.parser.add_argument('--test_ratio', type=float, default=0,
help="Set aside this proportion of the dataset as a test set")
self.parser.add_argument('--val_ratio', type=float, default=0.2,
help="Proportion of the dataset to be used as a validation set")
self.parser.add_argument('--pattern', type=str,
help='Regex pattern used to select files contained in `data_dir`. If None, all data will be used.')
self.parser.add_argument('--val_pattern', type=str,
help="""Regex pattern used to select files contained in `data_dir` exclusively for the validation set.
If None, a positive `val_ratio` will be used to reserve part of the common data set.""")
self.parser.add_argument('--test_pattern', type=str,
help="""Regex pattern used to select files contained in `data_dir` exclusively for the test set.
If None, `test_ratio`, if specified, will be used to reserve part of the common data set.""")
self.parser.add_argument('--normalization',
choices={'standardization', 'minmax', 'per_sample_std', 'per_sample_minmax'},
default='standardization',
help='If specified, will apply normalization on the input features of a dataset.')
self.parser.add_argument('--norm_from',
help="""If given, will read normalization values (e.g. mean, std, min, max) from specified pickle file.
The columns correspond to features, rows correspond to mean, std or min, max.""")
self.parser.add_argument('--subsample_factor', type=int,
help='Sub-sampling factor used for long sequences: keep every kth sample')
# Training process
self.parser.add_argument('--task', choices={"imputation", "transduction", "classification", "regression"},
default="imputation",
help=("Training objective/task: imputation of masked values,\n"
" transduction of features to other features,\n"
" classification of entire time series,\n"
" regression of scalar(s) for entire time series"))
self.parser.add_argument('--masking_ratio', type=float, default=0.15,
help='Imputation: mask this proportion of each variable')
self.parser.add_argument('--mean_mask_length', type=float, default=3,
help="Imputation: the desired mean length of masked segments. Used only when `mask_distribution` is 'geometric'.")
self.parser.add_argument('--mask_mode', choices={'separate', 'concurrent'}, default='separate',
help=("Imputation: whether each variable should be masked separately "
"or all variables at a certain positions should be masked concurrently"))
self.parser.add_argument('--mask_distribution', choices={'geometric', 'bernoulli'}, default='geometric',
help=("Imputation: whether each mask sequence element is sampled independently at random"
"or whether sampling follows a markov chain (stateful), resulting in "
"geometric distributions of masked squences of a desired mean_mask_length"))
self.parser.add_argument('--exclude_feats', type=str, default=None,
help='Imputation: Comma separated string of indices corresponding to features to be excluded from masking')
self.parser.add_argument('--mask_feats', type=str, default='0, 1',
help='Transduction: Comma separated string of indices corresponding to features to be masked')
self.parser.add_argument('--start_hint', type=float, default=0.0,
help='Transduction: proportion at the beginning of time series which will not be masked')
self.parser.add_argument('--end_hint', type=float, default=0.0,
help='Transduction: proportion at the end of time series which will not be masked')
self.parser.add_argument('--harden', action='store_true',
help='Makes training objective progressively harder, by masking more of the input')
self.parser.add_argument('--epochs', type=int, default=400,
help='Number of training epochs')
self.parser.add_argument('--val_interval', type=int, default=2,
help='Evaluate on validation set every this many epochs. Must be >= 1.')
self.parser.add_argument('--optimizer', choices={"Adam", "RAdam"}, default="Adam", help="Optimizer")
self.parser.add_argument('--lr', type=float, default=1e-3,
help='learning rate (default holds for batch size 64)')
self.parser.add_argument('--lr_step', type=str, default='1000000',
help='Comma separated string of epochs when to reduce learning rate by a factor of 10.'
' The default is a large value, meaning that the learning rate will not change.')
self.parser.add_argument('--lr_factor', type=str, default='0.1',
help=("Comma separated string of multiplicative factors to be applied to lr "
"at corresponding steps specified in `lr_step`. If a single value is provided, "
"it will be replicated to match the number of steps in `lr_step`."))
self.parser.add_argument('--batch_size', type=int, default=64,
help='Training batch size')
self.parser.add_argument('--l2_reg', type=float, default=0,
help='L2 weight regularization parameter')
self.parser.add_argument('--global_reg', action='store_true',
help='If set, L2 regularization will be applied to all weights instead of only the output layer')
self.parser.add_argument('--key_metric', choices={'loss', 'accuracy', 'precision'}, default='loss',
help='Metric used for defining best epoch')
self.parser.add_argument('--freeze', action='store_true',
help='If set, freezes all layer parameters except for the output layer. Also removes dropout except before the output layer')
# gpt2 model
self.parser.add_argument('--model', choices={"transformer", "LINEAR"}, default="transformer",
help="Model class")
self.parser.add_argument('--max_seq_len', type=int,
help="""Maximum input sequence length. Determines size of transformer layers.
If not provided, then the value defined inside the data class will be used.""")
self.parser.add_argument('--data_window_len', type=int,
help="""Used instead of the `max_seq_len`, when the data samples must be
segmented into windows. Determines maximum input sequence length
(size of transformer layers).""")
self.parser.add_argument('--d_model', type=int, default=64,
help='Internal dimension of transformer embeddings')
self.parser.add_argument('--dim_feedforward', type=int, default=256,
help='Dimension of dense feedforward part of transformer layer')
self.parser.add_argument('--num_heads', type=int, default=8,
help='Number of multi-headed attention heads')
self.parser.add_argument('--num_layers', type=int, default=3,
help='Number of transformer encoder layers (blocks)')
self.parser.add_argument('--dropout', type=float, default=0.1,
help='Dropout applied to most transformer encoder layers')
self.parser.add_argument('--pos_encoding', choices={'fixed', 'learnable'}, default='fixed',
help='Internal dimension of transformer embeddings')
self.parser.add_argument('--activation', choices={'relu', 'gelu'}, default='gelu',
help='Activation to be used in transformer encoder')
self.parser.add_argument('--normalization_layer', choices={'BatchNorm', 'LayerNorm'}, default='BatchNorm',
help='Normalization layer to be used internally in transformer encoder')
# text prototype
self.parser.add_argument('--type_of_prototype', type=str, default='representative',
help='Provide or select the prototypes. ([provide text list] or random or representative)')
self.parser.add_argument('--number_of_prototype', type=int, default=10, metavar='Number',
help='Number of prototype to select')
# encoder
self.parser.add_argument('--load_encoder', action='store_true', default=False,
help='activate to load the estimator instead of ' +
'training it')
self.parser.add_argument('--fit_encoder_classifier', action='store_true', default=False,
help='if not supervised, activate to load the ' +
'model and retrain the classifier')
self.parser.add_argument('--encoder_save_path', type=str, metavar='PATH', default='./encoders/saved_models',
help='path where the estimator is/should be saved')
def parse(self):
args = self.parser.parse_args()
args.lr_step = [int(i) for i in args.lr_step.split(',')]
args.lr_factor = [float(i) for i in args.lr_factor.split(',')]
if (len(args.lr_step) > 1) and (len(args.lr_factor) == 1):
args.lr_factor = len(args.lr_step) * args.lr_factor # replicate
assert len(args.lr_step) == len(
args.lr_factor), "You must specify as many values in `lr_step` as in `lr_factors`"
if args.exclude_feats is not None:
args.exclude_feats = [int(i) for i in args.exclude_feats.split(',')]
args.mask_feats = [int(i) for i in args.mask_feats.split(',')]
if args.val_pattern is not None:
args.val_ratio = 0
args.test_ratio = 0
return args
class options_forecasting(object):
def __init__(self):
self.parser = argparse.ArgumentParser(description='gpt4ts long-term forecasting')
self.parser.add_argument('--config', dest='config_filepath',
help='Configuration .json file (optional). Overwrites existing command-line args!')
self.parser.add_argument('--model_id', type=str, required=True, default='test')
self.parser.add_argument('--output_dir', type=str, default='./output')
self.parser.add_argument('--name', dest='experiment_name', default='',
help='A string identifier/name for the experiment to be run - it will be appended to the output directory name, before the timestamp')
self.parser.add_argument('--no_timestamp', action='store_true',
help='If set, a timestamp will not be appended to the output directory name')
self.parser.add_argument('--seed',
help='Seed used for splitting sets. None by default, set to an integer for reproducibility')
self.parser.add_argument('--gpu', type=str, default='0',
help='GPU index, -1 for CPU')
self.parser.add_argument('--root_path', type=str, default='./dataset_forecasting/traffic/')
self.parser.add_argument('--data_path', type=str, default='traffic.csv')
self.parser.add_argument('--data', type=str, default='custom')
self.parser.add_argument('--features', type=str, default='M')
self.parser.add_argument('--freq', type=int, default=0)
self.parser.add_argument('--target', type=str, default='OT')
self.parser.add_argument('--embed', type=str, default='timeF')
self.parser.add_argument('--percent', type=int, default=100)
self.parser.add_argument('--seq_len', type=int, default=512)
self.parser.add_argument('--pred_len', type=int, default=96)
self.parser.add_argument('--label_len', type=int, default=48)
self.parser.add_argument('--decay_fac', type=float, default=0.75)
self. parser.add_argument('--learning_rate', type=float, default=0.001)
self.parser.add_argument('--batch_size', type=int, default=512)
self.parser.add_argument('--num_workers', type=int, default=10)
self.parser.add_argument('--train_epochs', type=int, default=10)
self.parser.add_argument('--lradj', type=str, default='type1')
self.parser.add_argument('--patience', type=int, default=3)
self.parser.add_argument('--gpt_layers', type=int, default=6)
self.parser.add_argument('--is_gpt', type=int, default=1)
self.parser.add_argument('--e_layers', type=int, default=3)
self.parser.add_argument('--d_model', type=int, default=768)
self.parser.add_argument('--n_heads', type=int, default=4)
self.parser.add_argument('--d_ff', type=int, default=768)
self.parser.add_argument('--dropout', type=float, default=0.2)
self.parser.add_argument('--enc_in', type=int, default=862)
self.parser.add_argument('--c_out', type=int, default=862)
self.parser.add_argument('--patch_size', type=int, default=16)
self.parser.add_argument('--kernel_size', type=int, default=25)
self.parser.add_argument('--loss_func', type=str, default='mse')
self.parser.add_argument('--pretrain', type=int, default=1)
self.parser.add_argument('--freeze', type=int, default=1)
self.parser.add_argument('--model', type=str, default='gpt4ts')
self.parser.add_argument('--stride', type=int, default=8)
self.parser.add_argument('--max_len', type=int, default=-1)
self.parser.add_argument('--hid_dim', type=int, default=16)
self.parser.add_argument('--tmax', type=int, default=10)
self.parser.add_argument('--itr', type=int, default=3)
self.parser.add_argument('--cos', type=int, default=1)
# text prototype
self.parser.add_argument('--type_of_prototype', type=str, default='representative',
help='Provide or select the prototypes. ([provide text list] or random or representative)')
self.parser.add_argument('--number_of_prototype', type=int, default=10, metavar='Number',
help='Number of prototype to select')
# encoder
self.parser.add_argument('--load_encoder', action='store_true', default=False,
help='activate to load the estimator instead of ' +
'training it')
self.parser.add_argument('--fit_encoder_classifier', action='store_true', default=False,
help='if not supervised, activate to load the ' +
'model and retrain the classifier')
self.parser.add_argument('--encoder_save_path', type=str, metavar='PATH', default='./encoders/saved_models',
help='path where the estimator is/should be saved')
def parse(self):
args = self.parser.parse_args()
return args