-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathrunning.py
552 lines (430 loc) · 24.2 KB
/
running.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
import logging
import sys
import os
import traceback
import json
from datetime import datetime
import string
import random
import numpy
from collections import OrderedDict
import time
import pickle
from functools import partial
import torch
from torch.utils.data import DataLoader
import numpy as np
import sklearn
from utils import utils, analysis
from models.loss import l2_reg_loss
from datasets_classification.dataset import ImputationDataset, TransductionDataset, ClassiregressionDataset, collate_unsuperv, collate_superv
from encoders import wrapper
logger = logging.getLogger('__main__')
NEG_METRICS = {'loss'} # metrics for which "better" is less
val_times = {"total_time": 0, "count": 0}
def pipeline_factory(config):
"""For the task specified in the configuration returns the corresponding combination of
Dataset class, collate function and Runner class."""
task = config['task']
if task == "imputation":
return partial(ImputationDataset, mean_mask_length=config['mean_mask_length'],
masking_ratio=config['masking_ratio'], mode=config['mask_mode'],
distribution=config['mask_distribution'], exclude_feats=config['exclude_feats']),\
collate_unsuperv, UnsupervisedRunner
if task == "transduction":
return partial(TransductionDataset, mask_feats=config['mask_feats'],
start_hint=config['start_hint'], end_hint=config['end_hint']), collate_unsuperv, UnsupervisedRunner
if (task == "classification") or (task == "regression"):
return ClassiregressionDataset, collate_superv, SupervisedRunner
else:
raise NotImplementedError("Task '{}' not implemented".format(task))
def setup(args):
"""Prepare training session: read configuration from file (takes precedence), create directories.
Input:
args: arguments object from argparse
Returns:
config: configuration dictionary
"""
config = args.__dict__ # configuration dictionary
if args.config_filepath is not None:
logger.info("Reading configuration ...")
try: # dictionary containing the entire configuration settings in a hierarchical fashion
config.update(utils.load_config(args.config_filepath))
except:
logger.critical("Failed to load configuration file. Check JSON syntax and verify that files exist")
traceback.print_exc()
sys.exit(1)
# Create output directory
initial_timestamp = datetime.now()
output_dir = config['output_dir']
if not os.path.isdir(output_dir):
raise IOError(
"Root directory '{}', where the directory of the experiment will be created, must exist".format(output_dir))
output_dir = os.path.join(output_dir, config['experiment_name'])
formatted_timestamp = initial_timestamp.strftime("%Y-%m-%d_%H-%M-%S")
config['initial_timestamp'] = formatted_timestamp
if (not config['no_timestamp']) or (len(config['experiment_name']) == 0):
rand_suffix = "".join(random.choices(string.ascii_letters + string.digits, k=3))
output_dir += "_" + formatted_timestamp + "_" + rand_suffix
config['output_dir'] = output_dir
config['save_dir'] = os.path.join(output_dir, 'checkpoints')
config['pred_dir'] = os.path.join(output_dir, 'predictions')
config['tensorboard_dir'] = os.path.join(output_dir, 'tb_summaries')
utils.create_dirs([config['save_dir'], config['pred_dir'], config['tensorboard_dir']])
# Save configuration as a (pretty) json file
with open(os.path.join(output_dir, 'configuration.json'), 'w') as fp:
json.dump(config, fp, indent=4, sort_keys=True)
logger.info("Stored configuration file in '{}'".format(output_dir))
return config
def fold_evaluate(dataset, model, device, loss_module, target_feats, config, dataset_name):
allfolds = {'target_feats': target_feats, # list of len(num_folds), each element: list of target feature integer indices
'predictions': [], # list of len(num_folds), each element: (num_samples, seq_len, feat_dim) prediction per sample
'targets': [], # list of len(num_folds), each element: (num_samples, seq_len, feat_dim) target/original input per sample
'target_masks': [], # list of len(num_folds), each element: (num_samples, seq_len, feat_dim) boolean mask per sample
'metrics': [], # list of len(num_folds), each element: (num_samples, num_metrics) metric per sample
'IDs': []} # list of len(num_folds), each element: (num_samples,) ID per sample
for i, tgt_feats in enumerate(target_feats):
dataset.mask_feats = tgt_feats # set the transduction target features
loader = DataLoader(dataset=dataset,
batch_size=config['batch_size'],
shuffle=False,
num_workers=config['num_workers'],
pin_memory=True,
collate_fn=lambda x: collate_unsuperv(x, max_len=config['max_seq_len']))
evaluator = UnsupervisedRunner(model, loader, device, loss_module,
print_interval=config['print_interval'], console=config['console'])
logger.info("Evaluating {} set, fold: {}, target features: {}".format(dataset_name, i, tgt_feats))
aggr_metrics, per_batch = evaluate(evaluator)
metrics_array = convert_metrics_per_batch_to_per_sample(per_batch['metrics'], per_batch['target_masks'])
metrics_array = np.concatenate(metrics_array, axis=0)
allfolds['metrics'].append(metrics_array)
allfolds['predictions'].append(np.concatenate(per_batch['predictions'], axis=0))
allfolds['targets'].append(np.concatenate(per_batch['targets'], axis=0))
allfolds['target_masks'].append(np.concatenate(per_batch['target_masks'], axis=0))
allfolds['IDs'].append(np.concatenate(per_batch['IDs'], axis=0))
metrics_mean = np.mean(metrics_array, axis=0)
metrics_std = np.std(metrics_array, axis=0)
for m, metric_name in enumerate(list(aggr_metrics.items())[1:]):
logger.info("{}:: Mean: {:.3f}, std: {:.3f}".format(metric_name, metrics_mean[m], metrics_std[m]))
pred_filepath = os.path.join(config['pred_dir'], dataset_name + '_fold_transduction_predictions.pickle')
logger.info("Serializing predictions into {} ... ".format(pred_filepath))
with open(pred_filepath, 'wb') as f:
pickle.dump(allfolds, f, pickle.HIGHEST_PROTOCOL)
def convert_metrics_per_batch_to_per_sample(metrics, target_masks):
"""
Args:
metrics: list of len(num_batches), each element: list of len(num_metrics), each element: (num_active_in_batch,) metric per element
target_masks: list of len(num_batches), each element: (batch_size, seq_len, feat_dim) boolean mask: 1s active, 0s ignore
Returns:
metrics_array = list of len(num_batches), each element: (batch_size, num_metrics) metric per sample
"""
metrics_array = []
for b, batch_target_masks in enumerate(target_masks):
num_active_per_sample = np.sum(batch_target_masks, axis=(1, 2))
batch_metrics = np.stack(metrics[b], axis=1) # (num_active_in_batch, num_metrics)
ind = 0
metrics_per_sample = np.zeros((len(num_active_per_sample), batch_metrics.shape[1])) # (batch_size, num_metrics)
for n, num_active in enumerate(num_active_per_sample):
new_ind = ind + num_active
metrics_per_sample[n, :] = np.sum(batch_metrics[ind:new_ind, :], axis=0)
ind = new_ind
metrics_array.append(metrics_per_sample)
return metrics_array
def evaluate(evaluator):
"""Perform a single, one-off evaluation on an evaluator object (initialized with a dataset)"""
eval_start_time = time.time()
with torch.no_grad():
aggr_metrics, per_batch = evaluator.evaluate(epoch_num=None, keep_all=True)
eval_runtime = time.time() - eval_start_time
print()
print_str = 'Evaluation Summary: '
for k, v in aggr_metrics.items():
if v is not None:
print_str += '{}: {:8f} | '.format(k, v)
logger.info(print_str)
logger.info("Evaluation runtime: {} hours, {} minutes, {} seconds\n".format(*utils.readable_time(eval_runtime)))
return aggr_metrics, per_batch
def validate(val_evaluator, tensorboard_writer, config, best_metrics, best_value, epoch):
"""Run an evaluation on the validation set while logging metrics, and handle outcome"""
logger.info("Evaluating on validation set ...")
eval_start_time = time.time()
with torch.no_grad():
aggr_metrics, per_batch = val_evaluator.evaluate(epoch, keep_all=True)
eval_runtime = time.time() - eval_start_time
logger.info("Validation runtime: {} hours, {} minutes, {} seconds\n".format(*utils.readable_time(eval_runtime)))
global val_times
val_times["total_time"] += eval_runtime
val_times["count"] += 1
avg_val_time = val_times["total_time"] / val_times["count"]
avg_val_batch_time = avg_val_time / len(val_evaluator.dataloader)
avg_val_sample_time = avg_val_time / len(val_evaluator.dataloader.dataset)
logger.info("Avg val. time: {} hours, {} minutes, {} seconds".format(*utils.readable_time(avg_val_time)))
logger.info("Avg batch val. time: {} seconds".format(avg_val_batch_time))
logger.info("Avg sample val. time: {} seconds".format(avg_val_sample_time))
print()
print_str = 'Epoch {} Validation Summary: '.format(epoch)
for k, v in aggr_metrics.items():
tensorboard_writer.add_scalar('{}/val'.format(k), v, epoch)
print_str += '{}: {:8f} | '.format(k, v)
logger.info(print_str)
if config['key_metric'] in NEG_METRICS:
condition = (aggr_metrics[config['key_metric']] < best_value)
else:
condition = (aggr_metrics[config['key_metric']] > best_value)
if condition:
best_value = aggr_metrics[config['key_metric']]
utils.save_model(os.path.join(config['save_dir'], 'model_best.pth'), epoch, val_evaluator.model)
best_metrics = aggr_metrics.copy()
pred_filepath = os.path.join(config['pred_dir'], 'best_predictions')
np.savez(pred_filepath, **per_batch)
return aggr_metrics, best_metrics, best_value
def check_progress(epoch):
if epoch in [100, 140, 160, 220, 280, 340]:
return True
else:
return False
class BaseRunner(object):
def __init__(self, model, dataloader, device, loss_module, optimizer=None, l2_reg=None, print_interval=10, console=True):
self.model = model
self.dataloader = dataloader
self.device = device
self.optimizer = optimizer
self.loss_module = loss_module
self.l2_reg = l2_reg
self.print_interval = print_interval
self.printer = utils.Printer(console=console)
self.epoch_metrics = OrderedDict()
def train_epoch(self, epoch_num=None):
raise NotImplementedError('Please override in child class')
def evaluate(self, epoch_num=None, keep_all=True):
raise NotImplementedError('Please override in child class')
def print_callback(self, i_batch, metrics, prefix=''):
total_batches = len(self.dataloader)
template = "{:5.1f}% | batch: {:9d} of {:9d}"
content = [100 * (i_batch / total_batches), i_batch, total_batches]
for met_name, met_value in metrics.items():
template += "\t|\t{}".format(met_name) + ": {:g}"
content.append(met_value)
dyn_string = template.format(*content)
dyn_string = prefix + dyn_string
self.printer.print(dyn_string)
class UnsupervisedRunner(BaseRunner):
def train_epoch(self, epoch_num=None):
self.model = self.model.train()
epoch_loss = 0 # total loss of epoch
total_active_elements = 0 # total unmasked elements in epoch
for i, batch in enumerate(self.dataloader):
X, targets, target_masks, padding_masks, IDs = batch
targets = targets.to(self.device)
target_masks = target_masks.to(self.device) # 1s: mask and predict, 0s: unaffected input (ignore)
padding_masks = padding_masks.to(self.device) # 0s: ignore
predictions = self.model(X.to(self.device), padding_masks) # (batch_size, padded_length, feat_dim)
# Cascade noise masks (batch_size, padded_length, feat_dim) and padding masks (batch_size, padded_length)
target_masks = target_masks * padding_masks.unsqueeze(-1)
loss = self.loss_module(predictions, targets, target_masks) # (num_active,) individual loss (square error per element) for each active value in batch
batch_loss = torch.sum(loss)
mean_loss = batch_loss / len(loss) # mean loss (over active elements) used for optimization
if self.l2_reg:
total_loss = mean_loss + self.l2_reg * l2_reg_loss(self.model)
else:
total_loss = mean_loss
# Zero gradients, perform a backward pass, and update the weights.
self.optimizer.zero_grad()
total_loss.backward()
# torch.nn.utils.clip_grad_value_(self.model.parameters(), clip_value=1.0)
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=4.0)
self.optimizer.step()
metrics = {"loss": mean_loss.item()}
if i % self.print_interval == 0:
ending = "" if epoch_num is None else 'Epoch {} '.format(epoch_num)
self.print_callback(i, metrics, prefix='Training ' + ending)
with torch.no_grad():
total_active_elements += len(loss)
epoch_loss += batch_loss.item() # add total loss of batch
epoch_loss = epoch_loss / total_active_elements # average loss per element for whole epoch
self.epoch_metrics['epoch'] = epoch_num
self.epoch_metrics['loss'] = epoch_loss
return self.epoch_metrics
def evaluate(self, epoch_num=None, keep_all=True):
self.model = self.model.eval()
epoch_loss = 0 # total loss of epoch
total_active_elements = 0 # total unmasked elements in epoch
if keep_all:
per_batch = {'target_masks': [], 'targets': [], 'predictions': [], 'metrics': [], 'IDs': []}
for i, batch in enumerate(self.dataloader):
X, targets, target_masks, padding_masks, IDs = batch
targets = targets.to(self.device)
target_masks = target_masks.to(self.device) # 1s: mask and predict, 0s: unaffected input (ignore)
padding_masks = padding_masks.to(self.device) # 0s: ignore
# TODO: for debugging
# input_ok = utils.check_tensor(X, verbose=False, zero_thresh=1e-8, inf_thresh=1e4)
# if not input_ok:
# print("Input problem!")
# ipdb.set_trace()
#
# utils.check_model(self.model, verbose=False, stop_on_error=True)
predictions = self.model(X.to(self.device), padding_masks) # (batch_size, padded_length, feat_dim)
# Cascade noise masks (batch_size, padded_length, feat_dim) and padding masks (batch_size, padded_length)
target_masks = target_masks * padding_masks.unsqueeze(-1)
loss = self.loss_module(predictions, targets, target_masks) # (num_active,) individual loss (square error per element) for each active value in batch
batch_loss = torch.sum(loss).cpu().item()
mean_loss = batch_loss / len(loss) # mean loss (over active elements) used for optimization the batch
if keep_all:
per_batch['target_masks'].append(target_masks.cpu().numpy())
per_batch['targets'].append(targets.cpu().numpy())
per_batch['predictions'].append(predictions.cpu().numpy())
per_batch['metrics'].append([loss.cpu().numpy()])
per_batch['IDs'].append(IDs)
metrics = {"loss": mean_loss}
if i % self.print_interval == 0:
ending = "" if epoch_num is None else 'Epoch {} '.format(epoch_num)
self.print_callback(i, metrics, prefix='Evaluating ' + ending)
total_active_elements += len(loss)
epoch_loss += batch_loss # add total loss of batch
epoch_loss = epoch_loss / total_active_elements # average loss per element for whole epoch
self.epoch_metrics['epoch'] = epoch_num
self.epoch_metrics['loss'] = epoch_loss
if keep_all:
return self.epoch_metrics, per_batch
else:
return self.epoch_metrics
class SupervisedRunner(BaseRunner):
def __init__(self, *args, **kwargs):
super(SupervisedRunner, self).__init__(*args, **kwargs)
if isinstance(args[3], torch.nn.CrossEntropyLoss):
self.classification = True # True if classification, False if regression
self.analyzer = analysis.Analyzer(print_conf_mat=True)
else:
self.classification = False
def train_epoch(self, epoch_num=None):
self.model = self.model.train()
epoch_loss = 0 # total loss of epoch
total_samples = 0 # total samples in epoch
for i, batch in enumerate(self.dataloader):
X, targets, padding_masks, IDs = batch
targets = targets.to(self.device)
padding_masks = padding_masks.to(self.device) # 0s: ignore
# regression: (batch_size, num_labels); classification: (batch_size, num_classes) of logits
predictions = self.model(X.to(self.device), padding_masks)
loss = self.loss_module(predictions, targets) # (batch_size,) loss for each sample in the batch
batch_loss = torch.sum(loss)
mean_loss = batch_loss / len(loss) # mean loss (over samples) used for optimization
if self.l2_reg:
total_loss = mean_loss + self.l2_reg * l2_reg_loss(self.model)
else:
total_loss = mean_loss
# Zero gradients, perform a backward pass, and update the weights.
self.optimizer.zero_grad()
total_loss.backward()
# torch.nn.utils.clip_grad_value_(self.model.parameters(), clip_value=1.0)
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=4.0)
self.optimizer.step()
metrics = {"loss": mean_loss.item()}
if i % self.print_interval == 0:
ending = "" if epoch_num is None else 'Epoch {} '.format(epoch_num)
self.print_callback(i, metrics, prefix='Training ' + ending)
with torch.no_grad():
total_samples += len(loss)
epoch_loss += batch_loss.item() # add total loss of batch
epoch_loss = epoch_loss / total_samples # average loss per sample for whole epoch
self.epoch_metrics['epoch'] = epoch_num
self.epoch_metrics['loss'] = epoch_loss
return self.epoch_metrics
def evaluate(self, epoch_num=None, keep_all=True):
self.model = self.model.eval()
epoch_loss = 0 # total loss of epoch
total_samples = 0 # total samples in epoch
per_batch = {'target_masks': [], 'targets': [], 'predictions': [], 'metrics': [], 'IDs': []}
for i, batch in enumerate(self.dataloader):
X, targets, padding_masks, IDs = batch
targets = targets.to(self.device)
padding_masks = padding_masks.to(self.device) # 0s: ignore
# regression: (batch_size, num_labels); classification: (batch_size, num_classes) of logits
predictions = self.model(X.to(self.device),padding_masks)
loss = self.loss_module(predictions, targets) # (batch_size,) loss for each sample in the batch
batch_loss = torch.sum(loss).cpu().item()
mean_loss = batch_loss / len(loss) # mean loss (over samples)
per_batch['targets'].append(targets.cpu().numpy())
per_batch['predictions'].append(predictions.cpu().numpy())
per_batch['metrics'].append([loss.cpu().numpy()])
per_batch['IDs'].append(IDs)
metrics = {"loss": mean_loss}
if i % self.print_interval == 0:
ending = "" if epoch_num is None else 'Epoch {} '.format(epoch_num)
self.print_callback(i, metrics, prefix='Evaluating ' + ending)
total_samples += len(loss)
epoch_loss += batch_loss # add total loss of batch
epoch_loss = epoch_loss / total_samples # average loss per element for whole epoch
self.epoch_metrics['epoch'] = epoch_num
self.epoch_metrics['loss'] = epoch_loss
if self.classification:
predictions = torch.from_numpy(np.concatenate(per_batch['predictions'], axis=0))
probs = torch.nn.functional.softmax(predictions) # (total_samples, num_classes) est. prob. for each class and sample
predictions = torch.argmax(probs, dim=1).cpu().numpy() # (total_samples,) int class index for each sample
probs = probs.cpu().numpy()
targets = np.concatenate(per_batch['targets'], axis=0).flatten()
class_names = np.arange(probs.shape[1]) # TODO: temporary until I decide how to pass class names
metrics_dict = self.analyzer.analyze_classification(predictions, targets, class_names)
self.epoch_metrics['accuracy'] = metrics_dict['total_accuracy'] # same as average recall over all classes
self.epoch_metrics['precision'] = metrics_dict['prec_avg'] # average precision over all classes
if self.model.num_classes == 2:
false_pos_rate, true_pos_rate, _ = sklearn.metrics.roc_curve(targets, probs[:, 1]) # 1D scores needed
self.epoch_metrics['AUROC'] = sklearn.metrics.auc(false_pos_rate, true_pos_rate)
prec, rec, _ = sklearn.metrics.precision_recall_curve(targets, probs[:, 1])
self.epoch_metrics['AUPRC'] = sklearn.metrics.auc(rec, prec)
if keep_all:
return self.epoch_metrics, per_batch
else:
return self.epoch_metrics
def fit_encoder_classifier_parameters(text_prototype, dataset_x, dataset_labels, cuda, gpu,local_rank,
save_memory=False):
"""
@param file Path of a file containing a set of hyperparemeters.
@param train Training set.
@param train_labels Labels for the training set.
@param cuda If True, enables computations on the GPU.
@param gpu GPU to use if CUDA is enabled.
@param save_memory If True, save GPU memory by propagating gradients after
each loss term, instead of doing it after computing the whole loss.
"""
classifier = wrapper.CausalCNNEncoderClassifier()
# Loads a given set of hyperparameters and fits a model with those
hf = open(os.path.join('./encoders/default_hyperparameters.json'), 'r')
params = json.load(hf)
hf.close()
# Check the number of input channels
params['in_channels'] = numpy.shape(dataset_x)[1]
params['cuda'] = cuda
params['gpu'] = gpu
params['local_rank'] = local_rank
params['reduced_size'] = text_prototype.size(1)
classifier.set_params(**params)
return classifier.fit(
dataset_x, dataset_labels, save_memory=save_memory, verbose=True
)
def fit_encoder_parameters(text_prototype, dataset_x, cuda, gpu,local_rank,
save_memory=False):
"""
@param file Path of a file containing a set of hyperparemeters.
@param train Training set.
@param train_labels Labels for the training set.
@param cuda If True, enables computations on the GPU.
@param gpu GPU to use if CUDA is enabled.
@param save_memory If True, save GPU memory by propagating gradients after
each loss term, instead of doing it after computing the whole loss.
"""
encoder = wrapper.TimeSeriesCausalCNNEncoder()
# Loads a given set of hyperparameters and fits a model with those
hf = open(os.path.join('./encoders/default_hyperparameters.json'), 'r')
params = json.load(hf)
hf.close()
# Check the number of input channels
params['in_channels'] = numpy.shape(dataset_x)[1]
params['cuda'] = cuda
params['gpu'] = gpu
params['local_rank'] = local_rank
params['reduced_size'] = text_prototype.size(1)
encoder.set_params(**params)
return encoder.fit_encoder(
dataset_x, save_memory=save_memory, verbose=True
)