-
Notifications
You must be signed in to change notification settings - Fork 93
/
Copy pathassist.c
873 lines (680 loc) · 34.8 KB
/
assist.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
/* ASSIST.C (C) Copyright Roger Bowler, 1999-2012 */
/* (C) Copyright Jan Jaeger, 1999-2012 */
/* (C) and others 2013-2023 */
/* ESA/390 MVS Assist Routines */
/* */
/* Released under "The Q Public License Version 1" */
/* (http://www.hercules-390.org/herclic.html) as modifications to */
/* Hercules. */
/* z/Architecture support - (C) Copyright Jan Jaeger, 1999-2012 */
/*-------------------------------------------------------------------*/
/* This module contains routines which process the MVS Assist */
/* instructions described in the manual GA22-7079-01. */
/*-------------------------------------------------------------------*/
/* Instruction decode rework - Jan Jaeger */
/* Correct address wraparound - Jan Jaeger */
/* Add dummy assist instruction - Jay Maynard, */
/* suggested by Brandon Hill */
#include "hstdinc.h"
#define _ASSIST_C_
#define _HENGINE_DLL_
#include "hercules.h"
#include "opcode.h"
#include "inline.h"
#include "ecpsvm.h"
DISABLE_GCC_UNUSED_SET_WARNING;
#if !defined(_ASSIST_C)
#define _ASSIST_C
/*-------------------------------------------------------------------*/
/* Control block offsets fixed by architecture */
/*-------------------------------------------------------------------*/
/* Prefixed storage area offsets */
#define PSALCPUA 0x2F4 /* Logical CPU address */
#define PSAHLHI 0x2F8 /* Locks held indicators */
/* Bit settings for PSAHLHI */
#define PSACMSLI 0x00000002 /* CMS lock held indicator */
#define PSALCLLI 0x00000001 /* Local lock held indicator */
#define PSACSTK 0x380 /* Ptr to FRR stack */
#define PSALSFCC 0x3F4 /* Branch addr if stack full */
#define PSAXMFLG 0x49C /* Cross Memory Flags */
/* Bit settings for PSAXMFLG */
#define PSAXMODE 0x40 /* 0=Primary, 1=Secondary */
#define PSAXMCR3 0x5C4 /* CR3 & CR4 in PSA */
/* Address space control block offsets */
#define ASCBLOCK 0x080 /* Local lock */
#define ASCBLSWQ 0x084 /* Local lock suspend queue */
/* Lock interface table offsets */
#define LITOLOC (-16) /* Obtain local error exit */
#define LITRLOC (-12) /* Release local error exit */
#define LITOCMS (-8) /* Obtain CMS error exit */
#define LITRCMS (-4) /* Release CMS error exit */
#endif /*!defined(_ASSIST_C)*/
/* The macro below allows each assist instruction to execute in a virtual
machine. Per GA22-7072-0, these assist instructions must co-exist with
ECPS:VM if present (whether enabled or disabled), so that MVS running
as a guest of VM can use these assists. This is the "Virtual Machine
Extended Facility Assist" feature, also known as "370E" in VM. The macro
will allow execution of these privileged assist instructions when the
real PSW is in the problem state -- if and only if the guest virtual
machine PSW is in the virtual supervisor state (ECPSVM_CR6_VIRTPROB=0)
and the 370E feature is enabled (ECPS_CR6_VMMVSAS=1). Otherwise, the
PRIV_CHECK macro is invoked to cause a privileged operation exception.
*/
#define GUEST_CHECK( ) \
if (PROBSTATE( ®s->psw )) \
{ \
if ((regs->CR_L(6) & (ECPSVM_CR6_VIRTPROB + ECPSVM_CR6_VMMVSAS)) != ECPSVM_CR6_VMMVSAS) \
PRIV_CHECK( regs ); \
}
#if !defined( FEATURE_S390_DAT ) && !defined( FEATURE_001_ZARCH_INSTALLED_FACILITY )
/*-------------------------------------------------------------------*/
/* E502 - Page Fix [SSE] */
/*-------------------------------------------------------------------*/
DEF_INST(fix_page)
{
int b1, b2; /* Values of base field */
VADR effective_addr1,
effective_addr2; /* Effective addresses */
RADR mplp;
#define MPLPFAL 0x34
SSE( inst, regs, b1, effective_addr1, b2, effective_addr2 );
PER_ZEROADDR_XCHECK2( regs, b1, b2 );
GUEST_CHECK();
/* The Page Fix assist cannot return via the PTT_ERR( ) method as used
in most of the other assists here. Per GA22-7079-1 "IBM System/370
Assists for MVS", this assist must NOT exit to the next sequential
instruction. Instead, we follow the "simplified execution path"
described on page 3 of that documentation for Fix Page.
*/
regs->GR_L(14) = PSW_IA_FROM_IP(regs, 0);
mplp = ARCH_DEP( vfetch4 )( (effective_addr2 & ADDRESS_MAXWRAP( regs )),
USE_INST_SPACE, regs );
regs->GR_L(15) = ARCH_DEP( vfetch4 )( (( mplp+MPLPFAL ) & ADDRESS_MAXWRAP( regs )),
USE_INST_SPACE, regs );
SET_PSW_IA_AND_MAYBE_IP( regs, regs->GR_L(15) );
}
#endif /* !defined( FEATURE_S390_DAT ) && !defined( FEATURE_001_ZARCH_INSTALLED_FACILITY ) */
/*-------------------------------------------------------------------*/
/* E503 - SVC assist [SSE] */
/*-------------------------------------------------------------------*/
DEF_INST(svc_assist)
{
int b1, b2; /* Values of base field */
VADR effective_addr1,
effective_addr2; /* Effective addresses */
SSE(inst, regs, b1, effective_addr1, b2, effective_addr2);
PER_ZEROADDR_XCHECK2( regs, b1, b2 );
GUEST_CHECK( );
PTT_ERR( "*E503 SVCA", effective_addr1, effective_addr2, regs->psw.IA_L );
/*INCOMPLETE: NO ACTION IS TAKEN, THE SVC IS UNASSISTED
AND MVS WILL HAVE TO HANDLE THE SITUATION*/
}
/*-------------------------------------------------------------------*/
/* E504 - Obtain Local Lock [SSE] */
/*-------------------------------------------------------------------*/
DEF_INST(obtain_local_lock)
{
int b1, b2; /* Values of base field */
VADR effective_addr1,
effective_addr2; /* Effective addresses */
VADR ascb_addr; /* Virtual address of ASCB */
U32 hlhi_word; /* Highest lock held word */
VADR lit_addr; /* Virtual address of lock
interface table */
U32 lcpa; /* Logical CPU address */
VADR newia; /* Unsuccessful branch addr */
BYTE *mainstor; /* mainstor address */
U32 old; /* old value */
U32 new; /* new value */
int acc_mode = 0; /* access mode to use */
SSE(inst, regs, b1, effective_addr1, b2, effective_addr2);
PER_ZEROADDR_XCHECK2( regs, b1, b2 );
GUEST_CHECK( );
/* Specification exception if operands are not on word boundary */
if ((effective_addr1 & 0x00000003) || (effective_addr2 & 0x00000003))
ARCH_DEP(program_interrupt) (regs, PGM_SPECIFICATION_EXCEPTION);
PERFORM_SERIALIZATION(regs);
/* MAINLOCK may be required if cmpxchg assists unavailable */
OBTAIN_MAINLOCK(regs);
{
if (ACCESS_REGISTER_MODE(®s->psw))
acc_mode = USE_PRIMARY_SPACE;
/* Load ASCB address from first operand location */
ascb_addr = ARCH_DEP(vfetch4) ( effective_addr1, acc_mode, regs );
/* Load locks held bits from second operand location */
hlhi_word = ARCH_DEP(vfetch4) ( effective_addr2, acc_mode, regs );
/* Fetch our logical CPU address from PSALCPUA */
lcpa = ARCH_DEP(vfetch4) ( effective_addr2 - 4, acc_mode, regs );
/* Get mainstor address of ASCBLOCK word */
mainstor = MADDRL (ascb_addr + ASCBLOCK, 4, b2, regs, ACCTYPE_WRITE, regs->psw.pkey);
/* The lock word should contain 0; use this as our compare value.
Swap in the CPU address in lpca */
old = 0;
new = CSWAP32(lcpa);
/* Try exchanging values; cmpxchg4 returns 0=success, !0=failure */
if (!cmpxchg4( &old, new, mainstor ))
{
/* Store the unchanged value into the second operand to
ensure suppression in the event of an access exception */
ARCH_DEP(vstore4) ( hlhi_word, effective_addr2, acc_mode, regs );
/* Set the local lock held bit in the second operand */
hlhi_word |= PSALCLLI;
ARCH_DEP(vstore4) ( hlhi_word, effective_addr2, acc_mode, regs );
/* Set register 13 to zero to indicate lock obtained */
regs->GR_L(13) = 0;
}
else
{
/* Fetch the lock interface table address from the
second word of the second operand, and load the
new instruction address and amode from LITOLOC */
lit_addr = ARCH_DEP(vfetch4) ( effective_addr2 + 4, acc_mode, regs ) + LITOLOC;
lit_addr &= ADDRESS_MAXWRAP(regs);
newia = ARCH_DEP(vfetch4) ( lit_addr, acc_mode, regs );
/* Save the link information in register 12 */
regs->GR_L(12) = PSW_IA_FROM_IP(regs, 0);
/* Copy LITOLOC into register 13 to signify obtain failure */
regs->GR_L(13) = newia;
/* Update the PSW instruction address */
SET_PSW_IA_AND_MAYBE_IP(regs, newia);
}
}
RELEASE_MAINLOCK(regs);
PERFORM_SERIALIZATION(regs);
} /* end function obtain_local_lock */
/*-------------------------------------------------------------------*/
/* E505 - Release Local Lock [SSE] */
/*-------------------------------------------------------------------*/
DEF_INST(release_local_lock)
{
int b1, b2; /* Values of base field */
VADR effective_addr1,
effective_addr2; /* Effective addresses */
VADR ascb_addr; /* Virtual address of ASCB */
VADR lock_addr; /* Virtual addr of ASCBLOCK */
VADR susp_addr; /* Virtual addr of ASCBLSWQ */
U32 hlhi_word; /* Highest lock held word */
VADR lit_addr; /* Virtual address of lock
interface table */
U32 lock; /* Lock value */
U32 susp; /* Lock suspend queue */
U32 lcpa; /* Logical CPU address */
VADR newia; /* Unsuccessful branch addr */
int acc_mode = 0; /* access mode to use */
SSE(inst, regs, b1, effective_addr1, b2, effective_addr2);
PER_ZEROADDR_XCHECK2( regs, b1, b2 );
GUEST_CHECK( );
/* Specification exception if operands are not on word boundary */
if ((effective_addr1 & 0x00000003) || (effective_addr2 & 0x00000003))
ARCH_DEP(program_interrupt) (regs, PGM_SPECIFICATION_EXCEPTION);
/* Obtain main-storage access lock */
OBTAIN_MAINLOCK_UNCONDITIONAL(regs);
if (ACCESS_REGISTER_MODE(®s->psw))
acc_mode = USE_PRIMARY_SPACE;
/* Load ASCB address from first operand location */
ascb_addr = ARCH_DEP(vfetch4) ( effective_addr1, acc_mode, regs );
/* Load locks held bits from second operand location */
hlhi_word = ARCH_DEP(vfetch4) ( effective_addr2, acc_mode, regs );
/* Fetch our logical CPU address from PSALCPUA */
lcpa = ARCH_DEP(vfetch4) ( effective_addr2 - 4, acc_mode, regs );
/* Fetch the local lock and the suspend queue from the ASCB */
lock_addr = (ascb_addr + ASCBLOCK) & ADDRESS_MAXWRAP(regs);
susp_addr = (ascb_addr + ASCBLSWQ) & ADDRESS_MAXWRAP(regs);
lock = ARCH_DEP(vfetch4) ( lock_addr, acc_mode, regs );
susp = ARCH_DEP(vfetch4) ( susp_addr, acc_mode, regs );
/* Test if this CPU holds the local lock, and does not hold
any CMS lock, and the local lock suspend queue is empty */
if (lock == lcpa
&& (hlhi_word & (PSALCLLI | PSACMSLI)) == PSALCLLI
&& susp == 0)
{
/* Store the unchanged value into the second operand to
ensure suppression in the event of an access exception */
ARCH_DEP(vstore4) ( hlhi_word, effective_addr2, acc_mode, regs );
/* Clear the local lock held bit in the second operand */
hlhi_word &= ~PSALCLLI;
ARCH_DEP(vstore4) ( hlhi_word, effective_addr2, acc_mode, regs );
/* Set the local lock to zero */
ARCH_DEP(vstore4) ( 0, lock_addr, acc_mode, regs );
/* Set register 13 to zero to indicate lock released */
regs->GR_L(13) = 0;
}
else
{
/* Fetch the lock interface table address from the
second word of the second operand, and load the
new instruction address and amode from LITRLOC */
lit_addr = ARCH_DEP(vfetch4) ( effective_addr2 + 4, acc_mode, regs ) + LITRLOC;
lit_addr &= ADDRESS_MAXWRAP(regs);
newia = ARCH_DEP(vfetch4) ( lit_addr, acc_mode, regs );
/* Save the link information in register 12 */
regs->GR_L(12) = PSW_IA_FROM_IP(regs, 0);
/* Copy LITRLOC into register 13 to signify release failure */
regs->GR_L(13) = newia;
/* Update the PSW instruction address */
SET_PSW_IA_AND_MAYBE_IP(regs, newia);
}
/* Release main-storage access lock */
RELEASE_MAINLOCK_UNCONDITIONAL(regs);
} /* end function release_local_lock */
/*-------------------------------------------------------------------*/
/* E506 - Obtain CMS Lock [SSE] */
/*-------------------------------------------------------------------*/
DEF_INST(obtain_cms_lock)
{
int b1, b2; /* Values of base field */
VADR effective_addr1,
effective_addr2; /* Effective addresses */
VADR ascb_addr; /* Virtual address of ASCB */
U32 hlhi_word; /* Highest lock held word */
VADR lit_addr; /* Virtual address of lock
interface table */
VADR lock_addr; /* Lock address */
int lock_arn; /* Lock access register */
U32 lock; /* Lock value */
VADR newia; /* Unsuccessful branch addr */
BYTE *mainstor; /* mainstor address */
U32 old; /* old value */
U32 new; /* new value */
U32 locked = 0; /* status of cmpxchg4 result */
int acc_mode = 0; /* access mode to use */
SSE(inst, regs, b1, effective_addr1, b2, effective_addr2);
PER_ZEROADDR_XCHECK2( regs, b1, b2 );
GUEST_CHECK( );
/* Specification exception if operands are not on word boundary */
if ((effective_addr1 & 0x00000003) || (effective_addr2 & 0x00000003))
ARCH_DEP(program_interrupt) (regs, PGM_SPECIFICATION_EXCEPTION);
PERFORM_SERIALIZATION(regs);
/* General register 11 contains the lock address */
lock_addr = regs->GR_L(11) & ADDRESS_MAXWRAP(regs);
lock_arn = 11;
/* MAINLOCK may be required if cmpxchg assists unavailable */
OBTAIN_MAINLOCK(regs);
{
if (ACCESS_REGISTER_MODE(®s->psw))
acc_mode = USE_PRIMARY_SPACE;
/* Load ASCB address from first operand location */
ascb_addr = ARCH_DEP(vfetch4) ( effective_addr1, acc_mode, regs );
/* Load locks held bits from second operand location */
hlhi_word = ARCH_DEP(vfetch4) ( effective_addr2, acc_mode, regs );
/* Fetch the lock addressed by general register 11 */
lock = ARCH_DEP(vfetch4) ( lock_addr, acc_mode, regs );
/* Validate that the address space meets criteria to obtain the CMS lock:
the target lock word pointed to by GR11 must be 0,
the LOCAL lock *must* be held on this CPU,
and the CMS lock must *not* be held on this CPU. */
if (lock == 0
&& (hlhi_word & (PSALCLLI | PSACMSLI)) == PSALCLLI)
{
/* Get mainstor address of lock word */
mainstor = MADDRL (lock_addr, 4, b2, regs, ACCTYPE_WRITE, regs->psw.pkey);
/* The lock word should contain 0; use this as our compare value.
Swap in the ASCB address from instruction operand 1 */
old = 0;
new = CSWAP32(ascb_addr);
/* Try exchanging values; cmpxchg4 returns 0=success, !0=failure */
locked = !cmpxchg4( &old, new, mainstor );
}
if (locked)
{
/* Store the unchanged value into the second operand to
ensure suppression in the event of an access exception */
ARCH_DEP(vstore4) ( hlhi_word, effective_addr2, acc_mode, regs );
/* Set the CMS lock held bit in the second operand */
hlhi_word |= PSACMSLI;
ARCH_DEP(vstore4) ( hlhi_word, effective_addr2, acc_mode, regs );
/* Set register 13 to zero to indicate lock obtained */
regs->GR_L(13) = 0;
}
else
{
/* Fetch the lock interface table address from the
second word of the second operand, and load the
new instruction address and amode from LITOCMS */
lit_addr = ARCH_DEP(vfetch4) ( effective_addr2 + 4, acc_mode, regs ) + LITOCMS;
lit_addr &= ADDRESS_MAXWRAP(regs);
newia = ARCH_DEP(vfetch4) ( lit_addr, acc_mode, regs );
/* Save the link information in register 12 */
regs->GR_L(12) = PSW_IA_FROM_IP(regs, 0);
/* Copy LITOCMS into register 13 to signify obtain failure */
regs->GR_L(13) = newia;
/* Update the PSW instruction address */
SET_PSW_IA_AND_MAYBE_IP(regs, newia);
}
}
RELEASE_MAINLOCK(regs);
PERFORM_SERIALIZATION(regs);
} /* end function obtain_cms_lock */
/*-------------------------------------------------------------------*/
/* E507 - Release CMS Lock [SSE] */
/*-------------------------------------------------------------------*/
DEF_INST(release_cms_lock)
{
int b1, b2; /* Values of base field */
VADR effective_addr1,
effective_addr2; /* Effective addresses */
VADR ascb_addr; /* Virtual address of ASCB */
U32 hlhi_word; /* Highest lock held word */
VADR lit_addr; /* Virtual address of lock
interface table */
VADR lock_addr; /* Lock address */
int lock_arn; /* Lock access register */
U32 lock; /* Lock value */
U32 susp; /* Lock suspend queue */
VADR newia; /* Unsuccessful branch addr */
int acc_mode = 0; /* access mode to use */
SSE(inst, regs, b1, effective_addr1, b2, effective_addr2);
PER_ZEROADDR_XCHECK2( regs, b1, b2 );
GUEST_CHECK( );
/* Specification exception if operands are not on word boundary */
if ((effective_addr1 & 0x00000003) || (effective_addr2 & 0x00000003))
ARCH_DEP(program_interrupt) (regs, PGM_SPECIFICATION_EXCEPTION);
/* General register 11 contains the lock address */
lock_addr = regs->GR_L(11) & ADDRESS_MAXWRAP(regs);
lock_arn = 11;
/* Obtain main-storage access lock */
OBTAIN_MAINLOCK_UNCONDITIONAL(regs);
if (ACCESS_REGISTER_MODE(®s->psw))
acc_mode = USE_PRIMARY_SPACE;
/* Load ASCB address from first operand location */
ascb_addr = ARCH_DEP(vfetch4) ( effective_addr1, acc_mode, regs );
/* Load locks held bits from second operand location */
hlhi_word = ARCH_DEP(vfetch4) ( effective_addr2, acc_mode, regs );
/* Fetch the CMS lock and the suspend queue word */
lock = ARCH_DEP(vfetch4) ( lock_addr, acc_mode, regs );
susp = ARCH_DEP(vfetch4) ( lock_addr + 4, acc_mode, regs );
/* Test if current ASCB holds this lock, the locks held indicators
show a CMS lock is held, and the lock suspend queue is empty */
if (lock == ascb_addr
&& (hlhi_word & PSACMSLI)
&& susp == 0)
{
/* Store the unchanged value into the second operand to
ensure suppression in the event of an access exception */
ARCH_DEP(vstore4) ( hlhi_word, effective_addr2, acc_mode, regs );
/* Clear the CMS lock held bit in the second operand */
hlhi_word &= ~PSACMSLI;
ARCH_DEP(vstore4) ( hlhi_word, effective_addr2, acc_mode, regs );
/* Set the CMS lock to zero */
ARCH_DEP(vstore4) ( 0, lock_addr, acc_mode, regs );
/* Set register 13 to zero to indicate lock released */
regs->GR_L(13) = 0;
}
else
{
/* Fetch the lock interface table address from the
second word of the second operand, and load the
new instruction address and amode from LITRCMS */
lit_addr = ARCH_DEP(vfetch4) ( effective_addr2 + 4, acc_mode, regs ) + LITRCMS;
lit_addr &= ADDRESS_MAXWRAP(regs);
newia = ARCH_DEP(vfetch4) ( lit_addr, acc_mode, regs );
/* Save the link information in register 12 */
regs->GR_L(12) = PSW_IA_FROM_IP(regs, 0);
/* Copy LITRCMS into register 13 to signify release failure */
regs->GR_L(13) = newia;
/* Update the PSW instruction address */
SET_PSW_IA_AND_MAYBE_IP(regs, newia);
}
/* Release main-storage access lock */
RELEASE_MAINLOCK_UNCONDITIONAL(regs);
} /* end function release_cms_lock */
#if !defined(FEATURE_TRACING)
/*-------------------------------------------------------------------*/
/* E508 - Trace SVC Interruption [SSE] */
/*-------------------------------------------------------------------*/
DEF_INST(trace_svc_interruption)
{
int b1, b2; /* Values of base field */
VADR effective_addr1,
effective_addr2; /* Effective addresses */
SSE(inst, regs, b1, effective_addr1, b2, effective_addr2);
PER_ZEROADDR_XCHECK2( regs, b1, b2 );
GUEST_CHECK( );
/* Specification exception if operands are not on word boundary */
if ((effective_addr1 & 0x00000003) || (effective_addr2 & 0x00000003))
ARCH_DEP(program_interrupt) (regs, PGM_SPECIFICATION_EXCEPTION);
PTT_ERR("*E508 TRSVC",effective_addr1,effective_addr2,regs->psw.IA_L);
/*INCOMPLETE: NO TRACE ENTRY IS GENERATED*/
}
/*-------------------------------------------------------------------*/
/* E509 - Trace Program Interruption [SSE] */
/*-------------------------------------------------------------------*/
DEF_INST(trace_program_interruption)
{
int b1, b2; /* Values of base field */
VADR effective_addr1,
effective_addr2; /* Effective addresses */
SSE(inst, regs, b1, effective_addr1, b2, effective_addr2);
PER_ZEROADDR_XCHECK2( regs, b1, b2 );
GUEST_CHECK( );
/* Specification exception if operands are not on word boundary */
if ((effective_addr1 & 0x00000003) || (effective_addr2 & 0x00000003))
ARCH_DEP(program_interrupt) (regs, PGM_SPECIFICATION_EXCEPTION);
PTT_ERR("*E509 TRPGM",effective_addr1,effective_addr2,regs->psw.IA_L);
/*INCOMPLETE: NO TRACE ENTRY IS GENERATED*/
}
/*-------------------------------------------------------------------*/
/* E50A - Trace Initial SRB Dispatch [SSE] */
/*-------------------------------------------------------------------*/
DEF_INST(trace_initial_srb_dispatch)
{
int b1, b2; /* Values of base field */
VADR effective_addr1,
effective_addr2; /* Effective addresses */
SSE(inst, regs, b1, effective_addr1, b2, effective_addr2);
PER_ZEROADDR_XCHECK2( regs, b1, b2 );
GUEST_CHECK( );
/* Specification exception if operands are not on word boundary */
if ((effective_addr1 & 0x00000003) || (effective_addr2 & 0x00000003))
ARCH_DEP(program_interrupt) (regs, PGM_SPECIFICATION_EXCEPTION);
PTT_ERR("*E50A TRSRB",effective_addr1,effective_addr2,regs->psw.IA_L);
/*INCOMPLETE: NO TRACE ENTRY IS GENERATED*/
}
/*-------------------------------------------------------------------*/
/* E50B - Trace I/O Interruption [SSE] */
/*-------------------------------------------------------------------*/
DEF_INST(trace_io_interruption)
{
int b1, b2; /* Values of base field */
VADR effective_addr1,
effective_addr2; /* Effective addresses */
SSE(inst, regs, b1, effective_addr1, b2, effective_addr2);
PER_ZEROADDR_XCHECK2( regs, b1, b2 );
GUEST_CHECK( );
/* Specification exception if operands are not on word boundary */
if ((effective_addr1 & 0x00000003) || (effective_addr2 & 0x00000003))
ARCH_DEP(program_interrupt) (regs, PGM_SPECIFICATION_EXCEPTION);
PTT_ERR("*E50B TRIO",effective_addr1,effective_addr2,regs->psw.IA_L);
/*INCOMPLETE: NO TRACE ENTRY IS GENERATED*/
}
/*-------------------------------------------------------------------*/
/* E50C - Trace Task Dispatch [SSE] */
/*-------------------------------------------------------------------*/
DEF_INST(trace_task_dispatch)
{
int b1, b2; /* Values of base field */
VADR effective_addr1,
effective_addr2; /* Effective addresses */
SSE(inst, regs, b1, effective_addr1, b2, effective_addr2);
PER_ZEROADDR_XCHECK2( regs, b1, b2 );
GUEST_CHECK( );
/* Specification exception if operands are not on word boundary */
if ((effective_addr1 & 0x00000003) || (effective_addr2 & 0x00000003))
ARCH_DEP(program_interrupt) (regs, PGM_SPECIFICATION_EXCEPTION);
PTT_ERR("*E50C TRTSK",effective_addr1,effective_addr2,regs->psw.IA_L);
/*INCOMPLETE: NO TRACE ENTRY IS GENERATED*/
}
/*-------------------------------------------------------------------*/
/* E50D - Trace SVC Return [SSE] */
/*-------------------------------------------------------------------*/
DEF_INST(trace_svc_return)
{
int b1, b2; /* Values of base field */
VADR effective_addr1,
effective_addr2; /* Effective addresses */
SSE(inst, regs, b1, effective_addr1, b2, effective_addr2);
PER_ZEROADDR_XCHECK2( regs, b1, b2 );
GUEST_CHECK( );
/* Specification exception if operands are not on word boundary */
if ((effective_addr1 & 0x00000003) || (effective_addr2 & 0x00000003))
ARCH_DEP(program_interrupt) (regs, PGM_SPECIFICATION_EXCEPTION);
PTT_ERR("*E50D TRRTN",effective_addr1,effective_addr2,regs->psw.IA_L);
/*INCOMPLETE: NO TRACE ENTRY IS GENERATED*/
}
#endif /*!defined(FEATURE_TRACING)*/
/*-------------------------------------------------------------------*/
/* B242 - Add FRR [RRE] */
/*-------------------------------------------------------------------*/
DEF_INST( add_frr )
{
/* ADDFRR
Add new Functional-Recovery-Routine Stack entry
What little documentation that exists for this feature can be found
on page 9 of IBM System/370 Assists for MVS, GA22-7079-1 (the text
of which is copied verbatim further below), which can be found on
Bitsavers at:
* https://bitsavers.org/pdf/ibm/370/MVS/GA22-7079-1_IBM_System_370_Assists_for_MVS_2nd_ed_198110.pdf
The rest of the documentation regarding how it works is found in the
way MVS itself manages the FRR stack. The assist feature is part of
the 3033 Extensions.
r1 contains an entry value designating the type of FRR and action to
take by this assist. r2 contains the address of the FRR to be added.
*/
/* ADDFRR
"A new entry is added to the top of the current functional-
recovery-routine (FRR) stack. The entry is initialized with
values provided in general registers and with the PSW S bit
(bit 16)."
"Optionally, the contents of control registers 3 and 4 are
saved in an entry in a separate table."
"The general register designated by the r2 field provides the
logical address of the FRR entry point."
"Before instruction execution, the general register designated
by the r1 field provides three bytes that are stored in the
FRR entry and whose value determines if control registers 3
and 4 are to be stored as well. When instruction execution is
completed, the register designated by r1 contains the logical
address of the six-word work area within the new, current
FRR-stack entry."
"Logical location 380 hex contains the logical address of the
stack-table header. The stack-table header contains (1) a logical
address which is 32 less than the address of the first dynamic
entry in the stack table, (2) the logical address of the last
entry in the stack table, and (3) the logical address of the
current stack-table entry."
"At an offset from the beginning of the stack-table header is
found a table of stack-entry-extension entries. Optionally,
the contents of control registers 3 and 4 are saved in an
extension entry. One extension entry corresponds to each entry
in the stack table. The offset to the table of extension entries,
and the encoded length of an extension entry, are found in the
word at logical location BA8 hex."
Condition Code: The code remains unchanged.
Program Exceptions:
Access (storage operands)
Operation (when the instruction is not installed)
Privileged operation
Specification
*/
int r1, r2;
VADR frrstak;
VADR frrparm;
VADR frrlast;
U32 frrsize;
VADR frrcurr;
VADR frrnext;
VADR newia;
VADR cr_ptr;
BYTE entrycode;
U32 size, len;
VADR clear_vaddr;
static const BYTE zeros[256] = {0};
#define FRRSPARM 0x08
/* Entry code bits in r1 */
#define EUT 0x80
#define FULLXM 0x08
#define PRIMARY 0x04
#define LOCAL 0x02
#define GLOBAL 0x01
#define HOME 0x00
RRE( inst, regs, r1, r2 );
PRIV_CHECK( regs );
/* Obtain needed values from the FRR stack pointers */
frrstak = ARCH_DEP( vfetch4 )( PSACSTK, USE_PRIMARY_SPACE, regs ) & ADDRESS_MAXWRAP( regs );
frrparm = ARCH_DEP( vfetch4 )( (frrstak + 0), USE_PRIMARY_SPACE, regs ) & ADDRESS_MAXWRAP( regs );
frrlast = ARCH_DEP( vfetch4 )( (frrstak + 4) & ADDRESS_MAXWRAP( regs ), USE_PRIMARY_SPACE, regs ) & ADDRESS_MAXWRAP( regs );
frrsize = ARCH_DEP( vfetch4 )( (frrstak + 8) & ADDRESS_MAXWRAP( regs ), USE_PRIMARY_SPACE, regs );
frrcurr = ARCH_DEP( vfetch4 )( (frrstak + 12) & ADDRESS_MAXWRAP( regs ), USE_PRIMARY_SPACE, regs ) & ADDRESS_MAXWRAP( regs );
frrnext = (frrcurr + frrsize) & ADDRESS_MAXWRAP( regs );
/* Determine if FRR stack is full. If yes, then
branch to the system supplied code at PSALFSCC
*/
if (frrnext > frrlast)
{
newia = ARCH_DEP( vfetch4 )( PSALSFCC, USE_PRIMARY_SPACE, regs ) & ADDRESS_MAXWRAP( regs );
SET_PSW_IA_AND_MAYBE_IP( regs, newia );
return;
}
/* Perform exactly one of the following three functions based on the entry code from r1 */
entrycode = regs->GR_LHLCL( r1 );
/* 1. SETFRR A,MODE=HOME (no LOCAL/GLOBAL or EUT specification) */
if (entrycode == HOME)
{
/* Set the FRR entry point from r2 in the stack */
ARCH_DEP( vstore4 )( regs->GR_L(r2), frrnext, USE_PRIMARY_SPACE, regs );
}
/* 2. SETFRR A,MODE=(HOME, with any combination of LOCAL or GLOBAL or EUT=YES. */
else if ((!(entrycode & (FULLXM + PRIMARY))) && (entrycode & (EUT + GLOBAL + LOCAL)))
{
/* Set the FRR entry point from r2 in the stack */
ARCH_DEP( vstore4 )( regs->GR_L(r2) | 0x00000001, frrnext, USE_PRIMARY_SPACE, regs );
/* The entry code is stored in the FRR stack */
ARCH_DEP( vstoreb )( entrycode, (frrnext + 7) & ADDRESS_MAXWRAP( regs ), USE_PRIMARY_SPACE, regs );
}
/* 3. SETFRR A,MODE=(FULLXM | PRIMARY, with any or no combination of LOCAL or GLOBAL or EUT=YES. */
else
{
BYTE cr34[8]; // CR3 and CR4
/* Set the FRR entry point from r2 in the stack */
ARCH_DEP( vstore4 )( regs->GR_L(r2) | 0x00000001, frrnext, USE_PRIMARY_SPACE, regs );
/* Check if in secondary access mode; if yes turn on secondary bit in the entry code */
if (ARCH_DEP( vfetchb )( (PSAXMFLG & ADDRESS_MAXWRAP( regs )), USE_PRIMARY_SPACE, regs ) & PSAXMODE)
entrycode |= PSAXMODE; // indicate to FRR in secondary mode
/* The entry code is stored in the FRR stack */
ARCH_DEP( vstoreb )( entrycode, ((frrnext + 7) & ADDRESS_MAXWRAP( regs )), USE_PRIMARY_SPACE, regs );
/* Compute the address of the FRR area where CR3 and CR4 are copied from the PSA */
cr_ptr = frrnext - frrparm;
cr_ptr = cr_ptr >> 2;
cr_ptr = (frrstak + cr_ptr + 120) & ADDRESS_MAXWRAP( regs );
/* Copy CR3 and CR4 values from PSA to computed FRR area */
ARCH_DEP( vfetchc )( cr34, 8-1, PSAXMCR3, USE_PRIMARY_SPACE, regs );
ARCH_DEP( vstorec )( cr34, 8-1, cr_ptr, 0, regs );
}
/* Update the FRR stack pointers to point to the newly added FRR */
ARCH_DEP( vstore4 )( frrnext, (frrstak + 12) & ADDRESS_MAXWRAP( regs ), USE_PRIMARY_SPACE, regs );
/* Return with the FRRSPARM area address in r1 per the assist documentation */
regs->GR_L(r1) = (frrnext + FRRSPARM) & ADDRESS_MAXWRAP( regs );
/* Initialize (clear) the rest of the FRR stack */
clear_vaddr = (frrnext + 8) & ADDRESS_MAXWRAP( regs );
len = 256;
size = frrsize;
while (size)
{
if (len > size) len = size;
ARCH_DEP( vstorec )( zeros, len-1, clear_vaddr, 0, regs );
size -= len;
clear_vaddr += len;
clear_vaddr &= ADDRESS_MAXWRAP( regs );
}
}
#if !defined(_GEN_ARCH)
#if defined(_ARCH_NUM_1)
#define _GEN_ARCH _ARCH_NUM_1
#include "assist.c"
#endif
#if defined(_ARCH_NUM_2)
#undef _GEN_ARCH
#define _GEN_ARCH _ARCH_NUM_2
#include "assist.c"
#endif
#endif /*!defined(_GEN_ARCH)*/