-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_baseline.py
51 lines (46 loc) · 1.67 KB
/
run_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from dssat import run_spatial_dssat
import pandas as pd
import os
from datetime import datetime
country = "zimbabwe"
selected_cultivars = pd.read_csv(f"experiments/baseline_runs/{country}_selected_cultivars.csv")
selected_cultivars = selected_cultivars.set_index(["admin1", "cultivar"])
ADMIN1_LIST = selected_cultivars.index.get_level_values(0).unique()
DBNAME = "dssatserv"
obs = pd.read_csv("/home/dquintero/dssat_service/fewsnet_data/zimbabwe_main_maize.csv")
# obs = pd.read_csv("/home/dquintero/dssat_service/fewsnet_data/kenya_longRains_maize.csv")
# obs["admin_1"] = obs["admin_2"]
# Match records to planting dates in Zimbabwe
# obs["year"] = obs.year - 1
# obs = obs.loc[obs.season_name == "Long rains harvest"]
# obs = obs.loc[obs.year > 2010]
YEARS = range(2010, 2022)
def run_single_admin(admin1):
df_list = []
pars = selected_cultivars.loc[(admin1, )]
pars = pars.loc[pars.best].iloc[0]
nitro = pars.nitro/3
for year in YEARS:
tmp_df = run_spatial_dssat(
dbname=DBNAME,
schema=country,
admin1=admin1,
plantingdate=datetime(year, pars.month, 1),
cultivar=pars.name,
nitrogen=[(0, nitro), (30, nitro), (60, nitro)],
all_random=True
)
tmp_df["admin1"] = admin1
tmp_df["year"] = year
df_list.append(tmp_df)
return pd.concat(df_list, ignore_index=True)
# out = run_single_admin(ADMIN1_LIST[1])
# print()
def wrap_run(admin1):
out = run_single_admin(admin1)
out.to_csv(f"experiments/baseline_runs/{country}/{admin1}.csv", index=False)
from multiprocessing import Pool
p = Pool(16)
with p:
p.map(wrap_run, ADMIN1_LIST)
print("Done!")