-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathoptim_single_confounding.R
76 lines (69 loc) · 2.44 KB
/
optim_single_confounding.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
datai<-1
estimate.m<-numeric(100)
fail.count<-0
for (datai in 1:100){
load(paste0("K=50/data_K=50_",datai,".RData"))
y<-sim_data$case
XM<-as.matrix(sim_data[,-c(ncol(sim_data),(ncol(sim_data)-1))])
pop<-sim_data$Population
n<-nrow(sim_data)
p<-ncol(XM)-1
optimLA<-function(alpha,m,X,beta_int){
ftracer=0
tracer<-matrix(0, nrow=1,ncol=2)
i=1
for (i in 1:50){
dlogPenalisedL<-function(beta){
sum(X*y-(X*exp(alpha+(beta+pop*beta_int)*as.numeric(X))/(1+exp(alpha+(beta+beta_int*pop)*as.numeric(X)))))-m/2+m*exp(-beta)/(1+exp(-beta))
}
beta_max<-uniroot(dlogPenalisedL, c(-20,20))$root
logLP_betamax<-function(alpha0beta0){
alpha0<-alpha0beta0[1]
beta0<-alpha0beta0[2]
temp1<-sum(X^2*exp(alpha0+(beta_max+pop*beta0)*X)/(1+exp(alpha0+(beta_max+pop*beta0)*X)))-sum(X^2*(exp(alpha0+(beta_max+pop*beta0)*X)/(1+exp(alpha0+(beta_max+pop*beta0)*X)))^2)
temp2<-exp(-beta_max)/(1+exp(-beta_max))-(exp(-beta_max)/(1+exp(-beta_max)))^2
c=temp1+temp2
LP<-sum(y*(alpha0+(beta_max+pop*beta0)*as.numeric(X))-log(1+exp(alpha0+(beta_max+pop*beta0)*as.numeric(X))))-log(beta(m/2,m/2))-m/2*beta_max-m*log(1+exp(-beta_max))+0.5*log(c)
LP
}
opt.result<-optim(par=c(alpha,beta_int),
fn=logLP_betamax,
method="Nelder-Mead",
control=list(fnscale=-1, reltol=0.001))
if(abs(opt.result$value-ftracer)>=0.001*abs(ftracer)){
alpha=opt.result$par[1]
beta_int=opt.result$par[2]
tracer<-rbind(tracer,c(alpha,opt.result$objective))
ftracer<-opt.result$value
}else{
break
}
}
tracer
}
ms<-seq(1,10, by=0.1)
logl<-numeric(length(ms))
for (im in 1:length(ms)){
ini.m<-ms[im]
di=1
for (di in 1:(p+1)){
ini.alpha<-(-4)
tracer1<-optimLA(ini.alpha,ini.m,XM[,di],1)
logl[im]<-logl[im]+tracer1[nrow(tracer1),2]
}
}
print(paste0("dataset ", datai, ": done"))
if(ms[which.max(logl)]==10){
print(paste0("dataset ",datai,": ",ms[which.max(logl)]))
fail.count<-fail.count+1
if(any(apply(XM,2,mean)==0)){print("all 0 variant exists")
all0.count<-all0.count+1}
}
estimate.m[datai]<-ms[which.max(logl)]
#plot(ms,logl,type="b")
}
save(estimate.m,file=paste0("estimated_m_K=",p+1,".RData"))
mean(estimate.m)
sd(estimate.m)
mean(estimate.m)+1.96*sd(estimate.m)/10
mean(estimate.m)-1.96*sd(estimate.m)/10