-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathsettings.py
178 lines (154 loc) · 6.61 KB
/
settings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
import re
need_x_y_mark = ['Autoformer', 'Transformer', 'Informer']
need_x_mark = ['TCN', 'FSNet', 'OneNet']
data_settings = {
'wind': {'data': 'wind.csv', 'T':'UK', 'M':[28,28], 'prefetch_batch_size': 64},
'ECL':{'data':'electricity.csv','T':'OT','M':[321,321],'S':[1,1],'MS':[321,1], 'prefetch_batch_size': 10},
'ETTh1':{'data':'ETTh1.csv','T':'OT','M':[7,7],'S':[1,1],'MS':[7,1], 'prefetch_batch_size': 128},
'ETTh2':{'data':'ETTh2.csv','T':'OT','M':[7,7],'S':[1,1],'MS':[7,1], 'prefetch_batch_size': 128},
'ETTm1':{'data':'ETTm1.csv','T':'OT','M':[7,7],'S':[1,1],'MS':[7,1], 'prefetch_batch_size': 128},
'ETTm2':{'data':'ETTm2.csv','T':'OT','M':[7,7],'S':[1,1],'MS':[7,1], 'prefetch_batch_size': 128},
'Solar':{'data':'solar_AL.txt','T': 136,'M':[137,137],'S':[1,1],'MS':[137,1], 'prefetch_batch_size': 32},
'Weather':{'data':'weather.csv','T':'OT','M':[21,21],'S':[1,1],'MS':[21,1], 'prefetch_batch_size': 64},
'Traffic': {'data': 'traffic.csv', 'T':'OT', 'M':[862,862], 'prefetch_batch_size': 2},
'PeMSD8': {'data':'PeMSD8/PeMSD8.npz','T': 0,'M':[510,510],'S':[1,1],'MS':[510,1], 'prefetch_batch_size': 6, 'feat_dim': 3},
'Exchange': {'data': 'exchange_rate.csv', 'T':'OT', 'M':[8,8], 'prefetch_batch_size': 128},
'exchange_rate': {'data': 'exchange_rate.csv', 'T':'OT', 'M':[8,8], 'prefetch_batch_size': 128},
'Illness': {'data': 'illness.csv', 'T':'OT', 'M':[7,7], 'prefetch_batch_size': 128},
}
hyperparams = {
'PatchTST': {'e_layers': 3, 'patience': 5},
'MTGNN': {},
'Crossformer': {'lradj': 'Crossformer', 'e_layers': 3, 'seg_len': 24, 'd_ff': 512, 'd_model': 256, 'n_heads': 4, 'dropout': 0.2},
'DLinear': {},
'GPT4TS': {'e_layers': 3, 'd_model': 768, 'n_heads': 4, 'd_ff': 768, 'dropout': 0.3, 'train_epochs': 10}
}
def get_hyperparams(data, model, args):
hyperparam: dict = hyperparams[model]
if data in 'ECL|PeMSD4|PeMSD8|PEMS_BAY'.split('|'):
hyperparam['temperature'] = 0.1
# else:
# hyperparam['temperature'] = 1.0
if model == 'PatchTST':
hyperparam['patience'] = max(hyperparam['patience'], args.patience)
# if data in ['ECL']:
# hyperparam['patience'] = 10
if data in ['ETTh1', 'ETTh2', 'Weather', 'ETTm1', 'ETTm2', 'Exchange']:
hyperparam['batch_size'] = 128
elif data in ['Illness']:
hyperparam['batch_size'] = 16
if args.lradj != 'type3':
if data in ['ETTh1', 'ETTh2', 'Weather', 'Exchange', 'wind']:
hyperparam['lradj'] = 'type3'
elif data in ['Illness']:
hyperparam['lradj'] = 'constant'
else:
hyperparam['lradj'] = 'TST'
if data in ['ETTh1', 'ETTh2', 'Illness']:
hyperparam.update(**{'dropout': 0.3, 'fc_dropout': 0.3, 'n_heads': 4, 'd_model': 16, 'd_ff': 128})
elif data in ['ETTm1', 'ETTm2', 'Weather', 'ECL', 'Traffic']:
hyperparam.update(**{'dropout': 0.2, 'fc_dropout': 0.2, 'n_heads': 16, 'd_model': 128, 'd_ff': 256})
else:
hyperparam.update(**{'dropout': 0.2, 'fc_dropout': 0.2, 'n_heads': 16, 'd_model': 64, 'd_ff': 128})
elif model in ['MTGNN']:
if data in ['Traffic'] and args.pred_len >= 720:
hyperparam['batch_size'] = 24
if data in ['Exchange', 'Weather', 'wind']:
hyperparam['subgraph_size'] = 8
elif data in ['ETTh1', 'ETTh2', 'ETTm1', 'ETTm2', 'Illness']:
hyperparam['subgraph_size'] = 4
elif model == 'Crossformer':
if data == 'ECL' or args.lradj == 'fixed':
hyperparam['lradj'] = 'fixed'
if data in ['Traffic', 'PeMSD4'] and args.pred_len >= 720:
hyperparam['batch_size'] = 24
if data in ['PeMSD8'] and args.pred_len >= 720:
hyperparam['batch_size'] = 16
if data in ['ETTh1', 'ETTh2', 'ETTm1', 'ETTm2', 'Weather', 'Illness', 'wind', 'Exchange']:
hyperparam['d_model'] = 256
hyperparam['n_heads'] = 4
else:
hyperparam['d_model'] = 64
hyperparam['n_heads'] = 2
if data in ['Traffic', 'ECL']:
hyperparam['d_ff'] = 128
if data in ['Illness']:
hyperparam['e_layers'] = 2
elif model == 'GPT4TS':
if data == 'ETTh1':
hyperparam['lradj'] = 'typy4'
hyperparam['tmax'] = 20
elif data == 'ETTh2':
hyperparam['dropout'] = 1
hyperparam['tmax'] = 20
elif data == 'Traffic':
hyperparam['dropout'] = 0.3
elif data == 'ECL':
hyperparam['tmax'] = 10
elif data == 'Illness':
hyperparam['patch_size'] = 24
hyperparam['batch_size'] = 16
if data in ['ETTm1', 'ETTm2', 'ECL', 'Traffic', 'Weather']:
hyperparam['seq_len'] = 512
if data.startswith('ETTm'):
hyperparam['stride'] = 16
elif args.seq_len == 104:
hyperparam['stride'] = 2
return hyperparam
def pretrain_lr(model, dataset, H, lr):
if model == 'MTGNN':
if dataset in 'Weather|ETTh1|ETTm1'.split('|'):
return 0.0001
elif dataset in 'ETTm2'.split('|'):
return 0.0005
elif dataset in 'ETTh2'.split('|'):
return 0.001
elif dataset in 'Solar'.split('|'):
return 0.001
elif dataset in ['ECL']:
return 0.0005 if H == 720 else 0.001
return 0.001
if 'PatchTST' in model:
if dataset in ['PeMSD8', 'Solar']:
return 0.001
return 0.0001
if model == 'Crossformer':
if dataset in ['ECL']:
return 0.005
elif dataset in ['wind']:
if H <= 96:
return 0.0001
else:
return 0.00005
elif dataset in ['Weather']:
if H >= 192:
return 0.00001
else:
return 0.00005
elif dataset in 'Solar'.split('|'):
if H >= 192:
return 0.0005
else:
return 0.001
elif dataset in 'ETTh1|ETTh2'.split('|'):
if H >= 168:
return "0.00001"
else:
return 0.0001
elif dataset in 'ETTm1'.split('|'):
if H in [192, 336]:
return "0.00001"
else:
return 0.0001
if dataset in 'ETTm2'.split('|'):
if H >= 288:
return "0.00001"
else:
return 0.0001
if dataset in ['Traffic']:
if H in [720]:
return 0.0005
else:
return 0.001
return lr