forked from microsoft/qlib
-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathvis_data.py
107 lines (74 loc) · 2.54 KB
/
vis_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import pickle
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(color_codes=True)
plt.rcParams["font.sans-serif"] = "SimHei"
plt.rcParams["axes.unicode_minus"] = False
from tqdm.auto import tqdm
# tqdm.pandas() # for progress_apply
# %matplotlib inline
# %load_ext autoreload
# # Meta Input
# +
with open("./internal_data_s20.pkl", "rb") as f:
data = pickle.load(f)
data.data_ic_df.columns.names = ["start_date", "end_date"]
data_sim = data.data_ic_df.droplevel(axis=1, level="end_date")
data_sim.index.name = "test datetime"
# -
plt.figure(figsize=(40, 20))
sns.heatmap(data_sim)
plt.figure(figsize=(40, 20))
sns.heatmap(data_sim.rolling(20).mean())
# # Meta Model
from qlib import auto_init
auto_init()
from qlib.workflow import R
exp = R.get_exp(experiment_name="DDG-DA")
meta_rec = exp.list_recorders(rtype="list", max_results=1)[0]
meta_m = meta_rec.load_object("model")
pd.DataFrame(meta_m.tn.twm.linear.weight.detach().numpy()).T[0].plot()
pd.DataFrame(meta_m.tn.twm.linear.weight.detach().numpy()).T[0].rolling(5).mean().plot()
# # Meta Output
# +
with open("./tasks_s20.pkl", "rb") as f:
tasks = pickle.load(f)
task_df = {}
for t in tasks:
test_seg = t["dataset"]["kwargs"]["segments"]["test"]
if None not in test_seg:
# The last rolling is skipped.
task_df[test_seg] = t["reweighter"].time_weight
task_df = pd.concat(task_df)
task_df.index.names = ["OS_start", "OS_end", "IS_start", "IS_end"]
task_df = task_df.droplevel(["OS_end", "IS_end"])
task_df = task_df.unstack("OS_start")
# -
plt.figure(figsize=(40, 20))
sns.heatmap(task_df.T)
plt.figure(figsize=(40, 20))
sns.heatmap(task_df.rolling(10).mean().T)
# # Sub Models
#
# NOTE:
# - this section assumes that the model is Linear model!!
# - Other models does not support this analysis
exp = R.get_exp(experiment_name="rolling_ds")
def show_linear_weight(exp):
coef_df = {}
for r in exp.list_recorders("list"):
t = r.load_object("task")
if None in t["dataset"]["kwargs"]["segments"]["test"]:
continue
m = r.load_object("params.pkl")
coef_df[t["dataset"]["kwargs"]["segments"]["test"]] = pd.Series(m.coef_)
coef_df = pd.concat(coef_df)
coef_df.index.names = ["test_start", "test_end", "coef_idx"]
coef_df = coef_df.droplevel("test_end").unstack("coef_idx").T
plt.figure(figsize=(40, 20))
sns.heatmap(coef_df)
plt.show()
show_linear_weight(R.get_exp(experiment_name="rolling_ds"))
show_linear_weight(R.get_exp(experiment_name="rolling_models"))