-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.nf
244 lines (197 loc) · 8.67 KB
/
main.nf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
// Preprocessing
include { PREPARE_DROP as PREPARE_DROP_FRASER } from './modules/prepare_drop'
include { PREPARE_DROP as PREPARE_DROP_OUTRIDER } from './modules/prepare_drop'
include { BGZIP_INDEL_CADD } from './modules/bgzip_indel_cadd.nf'
include { PREPARE_VCF } from './modules/prepare_vcf.nf'
// Annotations
include { ADD_CADD_SCORES_TO_VCF } from './modules/annotate/add_cadd_scores_to_vcf.nf'
include { ANNOTATE_VEP } from './modules/annotate/annotate_vep.nf'
include { CALCULATE_INDEL_CADD } from './modules/annotate/calculate_indel_cadd.nf'
include { CREATE_PED } from './modules/annotate/create_ped.nf'
include { EXTRACT_INDELS_FOR_CADD } from './modules/annotate/extract_indels_for_cadd.nf'
include { INDEL_VEP } from './modules/annotate/indel_vep.nf'
include { MARK_SPLICE } from './modules/annotate/mark_splice.nf'
include { MODIFY_VCF } from './modules/annotate/modify_vcf.nf'
include { VCF_ANNO } from './modules/annotate/vcf_anno.nf'
include { VCF_COMPLETION } from './modules/annotate/vcf_completion.nf'
// Genmod
include { GENMOD_MODELS } from './modules/genmod/genmod_models.nf'
include { GENMOD_SCORE } from './modules/genmod/genmod_score.nf'
include { GENMOD_COMPOUND } from './modules/genmod/genmod_compound.nf'
include { GENMOD_SORT } from './modules/genmod/genmod_sort.nf'
// Postprocessing
include { FILTER_VARIANTS_ON_SCORE } from './modules/postprocessing/filter_variants_on_score.nf'
include { PARSE_TOMTE_QC } from './modules/postprocessing/parse_tomte_qc.nf'
include { MAKE_SCOUT_YAML } from './modules/postprocessing/make_scout_yaml.nf'
include { BGZIP_TABIX as BGZIP_TABIX_VCF } from './modules/postprocessing/bgzip_tabix.nf'
include { BGZIP_TABIX as BGZIP_TABIX_BED } from './modules/postprocessing/bgzip_tabix.nf'
include { BGZIP_TABIX } from './modules/postprocessing/bgzip_tabix.nf'
include { OUTPUT_VERSIONS } from './modules/postprocessing/output_versions.nf'
def startupMessage() {
print("Starting Nisse")
print("Output dir: ${params.outdir}")
}
workflow {
startupMessage()
ch_versions = Channel.empty()
Channel
.fromPath(params.input)
.splitCsv(header: true)
.set { ch_meta }
// Creating a channel for Hb percentage form Tomte results
ch_hb_estimates = ch_meta.map { meta ->
def sample_id = meta.sample
def hb_estimate_json = String.format(params.tomte_results_paths.hb_estimate, params.tomte_results, sample_id)
tuple(meta, file(hb_estimate_json))
}
ch_multiqc = ch_meta.map { meta ->
def multiqc_summary = String.format(params.tomte_results_paths.multiqc_summary, params.tomte_results)
def picard_coverage = String.format(params.tomte_results_paths.picard_coverage, params.tomte_results)
tuple(meta, file(multiqc_summary), file(picard_coverage))
}
QC(ch_versions, ch_multiqc.join(ch_hb_estimates))
ch_versions = ch_versions.mix(QC.out.versions)
if (!params.qc_only) {
ALL(ch_versions, ch_meta)
}
ch_versions = ch_versions.mix(QC.out.versions)
ch_joined_versions = ch_versions.collect { it[1] }
OUTPUT_VERSIONS(ch_joined_versions)
workflow.onComplete {
log.info("Completed without errors")
}
workflow.onError {
log.error("Aborted with errors")
}
}
workflow QC {
take:
ch_versions
ch_multiqc
main:
PARSE_TOMTE_QC(ch_multiqc)
emit:
versions = ch_versions
}
workflow ALL {
take:
ch_versions
ch_meta
main:
ch_vcf = ch_meta.map { meta ->
def sample_id = meta.sample
def variant_calls = String.format(params.tomte_results_paths.variant_calls, params.tomte_results, sample_id)
def variant_calls_tbi = "${variant_calls}.tbi"
tuple(meta, file(variant_calls), file(variant_calls_tbi))
}
ch_junction_bed = ch_meta.map { meta ->
def sample_id = meta.sample
def junction_bed = String.format(params.tomte_results_paths.junction_bed, params.tomte_results, sample_id)
tuple(meta, file(junction_bed))
}
ch_fraser_results = ch_meta.map { meta ->
def case_id = meta.case
def fraser_results = String.format(params.tomte_results_paths.fraser_tsv, params.tomte_results, case_id)
tuple(meta, file(fraser_results))
}
ch_outrider_results = ch_meta.map { meta ->
def case_id = meta.case
def outrider_results = String.format(params.tomte_results_paths.outrider_tsv, params.tomte_results, case_id)
tuple(meta, file(outrider_results))
}
ch_tomte_raw_results = ch_meta.map { meta ->
def sample_id = meta.sample
def cram = String.format(params.tomte_results_paths.cram, params.tomte_results, sample_id)
def cram_crai = String.format(params.tomte_results_paths.cram_crai, params.tomte_results, sample_id)
def bigwig = String.format(params.tomte_results_paths.bigwig, params.tomte_results, sample_id)
def peddy_ped = String.format(params.tomte_results_paths.peddy_ped, params.tomte_results, sample_id)
def peddy_check = String.format(params.tomte_results_paths.peddy_check, params.tomte_results, sample_id)
def peddy_sex = String.format(params.tomte_results_paths.peddy_sex, params.tomte_results, sample_id)
tuple(meta, file(cram), file(cram_crai), file(bigwig), file(peddy_ped), file(peddy_check), file(peddy_sex))
}
PREPROCESS(ch_fraser_results, ch_outrider_results, ch_vcf, params.hgnc_map, params.stat_col, params.stat_cutoff)
// FIXME: Can this be read from Tomte results?
CREATE_PED(ch_meta)
SNV_ANNOTATE(PREPROCESS.out.vcf, params.vep)
ch_versions = ch_versions.mix(SNV_ANNOTATE.out.versions)
SNV_SCORE(SNV_ANNOTATE.out.vcf, CREATE_PED.out.ped, params.score_config, params.score_threshold)
ch_versions = ch_versions.mix(SNV_SCORE.out.versions)
ch_drop_results = PREPROCESS.out.fraser.join(PREPROCESS.out.outrider)
BGZIP_TABIX_BED(ch_junction_bed)
ch_all_result_files = ch_drop_results
.join(SNV_SCORE.out.vcf_tbi)
.join(BGZIP_TABIX_BED.out.bed_tbi)
.join(ch_tomte_raw_results)
MAKE_SCOUT_YAML(ch_all_result_files, params.tomte_results, params.outdir, params.phenotype, params.tissue)
emit:
versions = ch_versions
}
workflow PREPROCESS {
take:
ch_fraser_results
ch_outrider_results
ch_vcf
val_hgnc_map
val_stat_col
val_stat_cutoff
main:
PREPARE_DROP_FRASER("FRASER", ch_fraser_results, val_hgnc_map, val_stat_col, val_stat_cutoff)
PREPARE_DROP_OUTRIDER("OUTRIDER", ch_outrider_results, val_hgnc_map, val_stat_col, val_stat_cutoff)
PREPARE_VCF(ch_vcf)
emit:
vcf = PREPARE_VCF.out.vcf
fraser = PREPARE_DROP_FRASER.out.drop
outrider = PREPARE_DROP_OUTRIDER.out.drop
}
workflow SNV_ANNOTATE {
take:
ch_vcf
val_vep_params
main:
ANNOTATE_VEP(ch_vcf, val_vep_params)
VCF_ANNO(ANNOTATE_VEP.out.vcf, val_vep_params)
MODIFY_VCF(VCF_ANNO.out.vcf)
MARK_SPLICE(MODIFY_VCF.out.vcf)
EXTRACT_INDELS_FOR_CADD(ch_vcf)
INDEL_VEP(EXTRACT_INDELS_FOR_CADD.out.vcf, val_vep_params)
CALCULATE_INDEL_CADD(INDEL_VEP.out.vcf)
BGZIP_INDEL_CADD(CALCULATE_INDEL_CADD.out.vcf)
ch_cadd_vcf = MARK_SPLICE.out.vcf.join(BGZIP_INDEL_CADD.out.cadd)
ADD_CADD_SCORES_TO_VCF(ch_cadd_vcf)
ch_versions = Channel.empty()
ch_versions = ch_versions.mix(ANNOTATE_VEP.out.versions)
ch_versions = ch_versions.mix(VCF_ANNO.out.versions)
ch_versions = ch_versions.mix(EXTRACT_INDELS_FOR_CADD.out.versions)
ch_versions = ch_versions.mix(INDEL_VEP.out.versions)
ch_versions = ch_versions.mix(CALCULATE_INDEL_CADD.out.versions)
ch_versions = ch_versions.mix(BGZIP_INDEL_CADD.out.versions)
ch_versions = ch_versions.mix(ADD_CADD_SCORES_TO_VCF.out.versions)
emit:
vcf = ADD_CADD_SCORES_TO_VCF.out.vcf
versions = ch_versions
}
workflow SNV_SCORE {
take:
ch_annotated_vcf
ch_ped
val_score_config
val_score_threshold
main:
GENMOD_MODELS(ch_annotated_vcf, ch_ped)
GENMOD_SCORE(GENMOD_MODELS.out.vcf, ch_ped, val_score_config)
GENMOD_COMPOUND(GENMOD_SCORE.out.vcf)
GENMOD_SORT(GENMOD_COMPOUND.out.vcf)
VCF_COMPLETION(GENMOD_SORT.out.vcf)
FILTER_VARIANTS_ON_SCORE(VCF_COMPLETION.out.vcf, val_score_threshold)
BGZIP_TABIX_VCF(FILTER_VARIANTS_ON_SCORE.out.vcf)
ch_versions = Channel.empty()
ch_versions = ch_versions.mix(GENMOD_MODELS.out.versions)
ch_versions = ch_versions.mix(GENMOD_COMPOUND.out.versions)
ch_versions = ch_versions.mix(GENMOD_SCORE.out.versions)
ch_versions = ch_versions.mix(GENMOD_SORT.out.versions)
ch_versions = ch_versions.mix(VCF_COMPLETION.out.versions)
ch_versions = ch_versions.mix(BGZIP_TABIX_VCF.out.versions)
emit:
vcf_tbi = BGZIP_TABIX_VCF.out.vcf_tbi
versions = ch_versions
}