-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
265 lines (202 loc) · 9.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from networks import Generator, Discriminator, ProjectionDiscriminator
from networks import init_weights
import torch
from torch import nn
from torch import optim
import dill
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
import os
from tqdm import tqdm
import dataloader
import losses
import numpy as np
import torch.nn.functional as F
import options
# Too many losses to keep track of
# Put everyone in a single place
class BookKeeping:
def __init__(self, tensorboard_log_path=None, suffix=''):
self.loss_names = ['mse', 'adversarial',
'generator', 'discriminator']
self.genesis()
# Initialize tensorboard objects
self.tboard = dict()
if tensorboard_log_path is not None:
if not os.path.exists(tensorboard_log_path):
os.mkdir(tensorboard_log_path)
for name in self.loss_names:
self.tboard[name] = SummaryWriter(os.path.join(tensorboard_log_path, name + '_' + suffix))
def genesis(self):
self.losses = {key: 0 for key in self.loss_names}
self.count = 0
def update(self, **kwargs):
for key in kwargs:
self.losses[key] += kwargs[key]
self.count += 1
def reset(self):
self.genesis()
def get_avg_losses(self):
avg_losses = dict()
for key in self.loss_names:
avg_losses[key] = self.losses[key] / self.count
return avg_losses
def update_tensorboard(self, epoch):
avg_losses = self.get_avg_losses()
for key in self.loss_names:
self.tboard[key].add_scalar(key, avg_losses[key], epoch)
def save_checkpoint(epoch, generator, discriminator, best_metrics, optimizer_G, lr_scheduler_G,
optimizer_D, lr_scheduler_D, filename='checkpoint.pth.tar'):
state = {'epoch': epoch, 'G_state_dict': generator.state_dict(), 'D_state_dict': discriminator.state_dict(),
'best_metrics': best_metrics, 'optimizer_G': optimizer_G, 'lr_scheduler_G': lr_scheduler_G,
'optimizer_D': optimizer_D, 'lr_scheduler_D': lr_scheduler_D}
torch.save(state, filename, pickle_module=dill)
def pbar_desc(label, epoch, total_epochs, loss_val, losses):
return f'{label}: {epoch:04d}/{total_epochs} | {loss_val:.3f} | mse: {losses["mse"]}'
def save_images(path, lr_images, fake_hr, hr_images, epoch, batchid):
images_path = os.path.join(path, f'{epoch:04d}')
if not os.path.exists(images_path):
os.makedirs(images_path)
for i, tensor in enumerate(lr_images):
np.save(f'{images_path}/{batchid}_{i:02d}_lr.jpg', tensor.numpy())
for i, tensor in enumerate(fake_hr):
np.save(f'{images_path}/{batchid}_{i:02d}_fake.jpg', tensor.numpy())
for i, tensor in enumerate(hr_images):
np.save(f'{images_path}/{batchid}_{i:02d}_hr.jpg', tensor.numpy())
def train(G, D, trn_dl, epoch, epochs, MSE, adv_loss, opt_G, opt_D, train_losses, args):
# Set the nets into training mode
G.train()
D.train()
t_pbar = tqdm(trn_dl, desc=pbar_desc('train', epoch, epochs, 0.0, {'mse': 0.0}))
for lr_imgs, hr_imgs in t_pbar:
# Send the images onto the appropriate device
lr_imgs = lr_imgs.to(args.DEVICE)
hr_imgs = hr_imgs.to(args.DEVICE)
# Freeze discriminator, train generator
for param in D.parameters():
param.requires_grad = False
fake_imgs = G(lr_imgs)
mse_loss = MSE(fake_imgs, hr_imgs)
mse_display = mse_loss.detach().cpu().item() # F.mse_loss(fake_imgs, hr_imgs).detach().cpu().item()
# Get predictions from discriminator
d_fake_preds = D(fake_imgs, lr_imgs)
# Train the generator to generate fake images
# such that the discriminator recognizes as real
g_adv_loss = adv_loss(d_fake_preds, True)
g_loss = args.MSE_LOSS_WEIGHT * mse_loss + args.ADVERSARIAL_LOSS_WEIGHT * g_adv_loss
opt_G.zero_grad()
g_loss.backward()
opt_G.step()
# Unfreeze discriminator, train only the discriminator
for param in D.parameters():
param.requires_grad = True
d_fake_preds = D(fake_imgs.detach(), lr_imgs) # detach to avoid backprop into G
d_real_preds = D(hr_imgs, lr_imgs)
d_loss = adv_loss(d_fake_preds, False) + adv_loss(d_real_preds, True)
opt_D.zero_grad()
d_loss.backward()
opt_D.step()
t_pbar.set_description(pbar_desc('train', epoch, args.EPOCHS, g_loss.item(), {'mse': round(mse_display, 3)}))
train_losses.update(mse=mse_loss.item(), adversarial=g_adv_loss.item(),
generator=g_loss.item(), discriminator=d_loss.item())
def evaluate(G, D, val_dl, epoch, epochs, MSE, adv_loss, val_losses, best_val_loss):
# Set the nets into evaluation mode
G.eval()
D.eval()
v_pbar = tqdm(val_dl, desc=pbar_desc('valid', epoch, epochs, 0.0, {'mse': 0.0}))
with torch.no_grad():
for lr_imgs, hr_imgs in v_pbar:
lr_imgs = lr_imgs.to(args.DEVICE)
hr_imgs = hr_imgs.to(args.DEVICE)
fake_imgs = G(lr_imgs)
mse_loss = MSE(fake_imgs, hr_imgs)
mse_display = mse_loss.detach().cpu().item() # F.mse_loss(fake_imgs, hr_imgs).detach().cpu().item()
d_fake_preds = D(fake_imgs, lr_imgs)
g_adv_loss = adv_loss(d_fake_preds, True)
g_loss = args.MSE_LOSS_WEIGHT * mse_loss + args.ADVERSARIAL_LOSS_WEIGHT * g_adv_loss
d_real_preds = D(hr_imgs, lr_imgs)
d_loss = adv_loss(d_fake_preds, False) + adv_loss(d_real_preds, True)
val_losses.update(mse=mse_loss.item(), adversarial=g_adv_loss.item(),
generator=g_loss.item(), discriminator=d_loss.item())
v_pbar.set_description(pbar_desc('valid', epoch, args.EPOCHS, g_loss.item(), {'mse': round(mse_display, 3)}))
# Save best model weights
avg_val_losses = val_losses.get_avg_losses()
avg_val_loss = avg_val_losses['generator']
avg_disval_loss = avg_val_losses['discriminator']
if avg_val_loss < best_val_loss or epoch % args.SAVE_EVERY == 0:
best_val_loss = g_loss.item()
torch.save(G.state_dict(), f'{WEIGHTS_SAVE_PATH}/{args.EXP_NO:02d}-G_epoch-{epoch:04d}_total-loss-{avg_val_loss:.3f}.pth')
torch.save(D.state_dict(), f'{WEIGHTS_SAVE_PATH}/{args.EXP_NO:02d}-D_epoch-{epoch:04d}_total-loss-{avg_disval_loss:.3f}.pth')
return best_val_loss
def main(args):
trn_ds = dataloader.MRIDatasetNpy(args.TRAIN_LR_IMAGES, args.TRAIN_HR_IMAGES, args.LR_NORM_ARR, args.HR_NORM_ARR, norm=False)
trn_dl = DataLoader(trn_ds, args.TRAIN_BATCH_SIZE, shuffle=True, num_workers=args.WORKERS)
val_ds = dataloader.MRIDatasetNpy(args.VAL_LR_IMAGES, args.VAL_HR_IMAGES, args.LR_NORM_ARR, args.HR_NORM_ARR, norm=False)
val_dl = DataLoader(val_ds, args.VAL_BATCH_SIZE, shuffle=False, num_workers=args.WORKERS)
start_epoch = 1
best_val_loss = float('inf')
# Generator
G = Generator(3, args.IN_CHANNELS, args.OUT_CHANNELS, args.NGF, args.NUM_RESBLOCKS, args.SCHEME, tanh=False)
print(G)
print('Generator Parameters:', sum(p.numel() for p in G.parameters()))
init_weights(G)
opt_G = optim.Adam(G.parameters(), lr=args.LR_G)
sched_G = optim.lr_scheduler.StepLR(opt_G, args.LR_STEP, gamma=args.LR_DECAY)
# Discriminator
# D = Discriminator(3, IN_CHANNELS, NDF, logits=False)
D = ProjectionDiscriminator(3, args.IN_CHANNELS, args.NDF, args.SCHEME, logits=False)
print(D)
print('Discriminator Parameters:', sum(p.numel() for p in D.parameters()))
init_weights(D)
opt_D = optim.Adam(D.parameters(), lr=args.LR_D)
sched_D = optim.lr_scheduler.StepLR(opt_D, args.LR_STEP, gamma=args.LR_DECAY)
if not os.path.exists(WEIGHTS_SAVE_PATH):
os.mkdir(WEIGHTS_SAVE_PATH)
if args.LOAD_CHECKPOINT is not None:
checkpoint = torch.load(args.LOAD_CHECKPOINT, pickle_module=dill)
start_epoch = checkpoint['epoch']
G.load_state_dict(checkpoint['G_state_dict'])
D.load_state_dict(checkpoint['D_state_dict'])
opt_G = checkpoint['optimizer_G']
opt_D = checkpoint['optimizer_D']
sched_G = checkpoint['lr_scheduler_G']
sched_D = checkpoint['lr_scheduler_D']
# best_val_loss = checkpoint['best_metrics']
G.to(args.DEVICE)
D.to(args.DEVICE)
# Losses
adv_loss = losses.AdversarialLoss(logits=False)
print(adv_loss)
adv_loss.to(args.DEVICE)
MSE = nn.MSELoss()
# MSE = nn.L1Loss()
print(MSE)
MSE.to(args.DEVICE)
train_losses = BookKeeping(TENSORBOARD_LOGDIR, suffix='trn')
val_losses = BookKeeping(TENSORBOARD_LOGDIR, suffix='val')
for epoch in range(start_epoch, args.EPOCHS + 1):
# Training loop
train(G, D, trn_dl, epoch, args.EPOCHS, MSE, adv_loss, opt_G, opt_D, train_losses, args)
# Validation loop
best_val_loss = evaluate(G, D, val_dl, epoch, args.EPOCHS, MSE, adv_loss, val_losses, best_val_loss, args)
sched_G.step()
sched_D.step()
save_checkpoint(epoch, G, D, None, opt_G, sched_G, opt_D, sched_D)
train_losses.update_tensorboard(epoch)
val_losses.update_tensorboard(epoch)
# Reset all loss for a new epoch
train_losses.reset()
val_losses.reset()
# Save real vs fake samples for quality inspection
generator = iter(val_dl)
for j in range(args.BATCHES_TO_SAVE):
lrs, hrs = next(generator)
fakes = G(lrs.to(args.DEVICE))
# Save samples at the end
save_images(END_EPOCH_SAVE_SAMPLES_PATH, lrs.detach().cpu(), fakes.detach().cpu(), hrs, epoch, j)
if __name__ == '__main__':
args = options.parse_arguments()
TENSORBOARD_LOGDIR = f'{args.EXP_NO:02d}-tboard'
END_EPOCH_SAVE_SAMPLES_PATH = f'{args.EXP_NO:02d}-epoch_end_samples'
WEIGHTS_SAVE_PATH = f'{args.EXP_NO:02d}-weights'
main(args)