diff --git a/sasmodels/multiscat.py b/sasmodels/multiscat.py index 9ecaa0f42..66fce625b 100644 --- a/sasmodels/multiscat.py +++ b/sasmodels/multiscat.py @@ -4,7 +4,9 @@ Calculate multiple scattering using 2D FFT convolution. -Usage:: +Usage: + +.. code-block:: none python -m sasmodels.multiscat [options] model_name model_par=value ... @@ -74,6 +76,9 @@ \mathcal{F}^{-1}\left\{ \sum_{l=1}^{n} \frac{P(k; \lambda)}{P(1; \lambda))} F^k \right\} \, \int I_1(q) {\rm d}q + = \mathcal{F}^{-1}\left\{ + \sum_{l=1}^{n} \frac{\lambda^{k-1}}{k!} F^k \right\} + \, \int I_1(q) {\rm d}q For speed we may use the fast fourier transform with a power of two. The resulting $I(q)$ will be linearly spaced and likely heavily oversampled.