diff --git a/sasmodels/compare.py b/sasmodels/compare.py index e1999713..f5228c9b 100755 --- a/sasmodels/compare.py +++ b/sasmodels/compare.py @@ -812,7 +812,7 @@ def compare(opts, limits=None, maxdim=None): if have_comp: plot_profile(comp._kernel.info, label='comp', **comp_pars) pylab.legend() - if opts['plot']: + if opts['plot'] or opts['show_weights'] or opts['show_profile']: import matplotlib.pyplot as plt plt.show() return limits diff --git a/sasmodels/data.py b/sasmodels/data.py index 9766a957..c1d1105d 100644 --- a/sasmodels/data.py +++ b/sasmodels/data.py @@ -134,6 +134,9 @@ class Source: class Sample: ... +def _as_numpy(data): + return None if data is None else np.asarray(data) + class Data1D(object): """ 1D data object. @@ -163,11 +166,12 @@ class Data1D(object): """ def __init__(self, x=None, y=None, dx=None, dy=None): # type: (OptArray, OptArray, OptArray, OptArray) -> None - self.x, self.y, self.dx, self.dy = x, y, dx, dy + self.x, self.dx = _as_numpy(x), _as_numpy(dx) + self.y, self.dy = _as_numpy(y), _as_numpy(dy) self.dxl = None self.filename = None - self.qmin = x.min() if x is not None else np.NaN - self.qmax = x.max() if x is not None else np.NaN + self.qmin = self.x.min() if self.x is not None else np.NaN + self.qmax = self.x.max() if self.x is not None else np.NaN # TODO: why is 1D mask False and 2D mask True? self.mask = (np.isnan(y) if y is not None else np.zeros_like(x, 'b') if x is not None @@ -240,13 +244,13 @@ class Data2D(object): """ def __init__(self, x=None, y=None, z=None, dx=None, dy=None, dz=None): # type: (OptArray, OptArray, OptArray, OptArray, OptArray, OptArray) -> None - self.qx_data, self.dqx_data = x, dx - self.qy_data, self.dqy_data = y, dy - self.data, self.err_data = z, dz + self.qx_data, self.dqx_data = _as_numpy(x), _as_numpy(dx) + self.qy_data, self.dqy_data = _as_numpy(y), _as_numpy(dy) + self.data, self.err_data = _as_numpy(z), _as_numpy(dz) self.mask = (np.isnan(z) if z is not None else np.zeros_like(x, dtype='bool') if x is not None else None) - self.q_data = np.sqrt(x**2 + y**2) + self.q_data = np.sqrt(self.qx_data**2 + self.qy_data**2) self.qmin = 1e-16 self.qmax = np.inf self.detector = [] diff --git a/sasmodels/direct_model.py b/sasmodels/direct_model.py index 5b9b2347..e172de6b 100644 --- a/sasmodels/direct_model.py +++ b/sasmodels/direct_model.py @@ -118,12 +118,15 @@ def get_mesh(model_info, values, dim='1d', mono=False): active = lambda name: True #print("in get_mesh: pars:",[p.id for p in parameters.call_parameters]) - mesh = [_get_par_weights(p, values, active(p.name)) + values = values.copy() + mesh = [_pop_par_weights(p, values, active(p.name)) for p in parameters.call_parameters] + if values: + raise TypeError(f"Unused parameters in call: {', '.join(values.keys())}") return mesh -def _get_par_weights(parameter, values, active=True): +def _pop_par_weights(parameter, values, active=True): # type: (Parameter, Dict[str, float], bool) -> Tuple[float, np.ndarray, np.ndarray] """ Generate the distribution for parameter *name* given the parameter values @@ -132,34 +135,27 @@ def _get_par_weights(parameter, values, active=True): Uses "name", "name_pd", "name_pd_type", "name_pd_n", "name_pd_sigma" from the *pars* dictionary for parameter value and parameter dispersion. """ - value = float(values.get(parameter.name, parameter.default)) - npts = values.get(parameter.name+'_pd_n', 0) - width = values.get(parameter.name+'_pd', 0.0) - relative = parameter.relative_pd - if npts == 0 or width == 0.0 or not active: - # Note: orientation parameters have the viewing angle as the parameter - # value and the jitter in the distribution, so be sure to set the - # empty pd for orientation parameters to 0. - pd = [value if relative or not parameter.polydisperse else 0.0], [1.0] + value = float(values.pop(parameter.name, parameter.default)) + if parameter.polydisperse: + npts = values.pop(parameter.name+'_pd_n', 0) + width = values.pop(parameter.name+'_pd', 0.0) + nsigma = values.pop(parameter.name+'_pd_nsigma', 3.0) + distribution = values.pop(parameter.name+'_pd_type', 'gaussian') + relative = parameter.relative_pd + if npts == 0 or width == 0.0 or not active: + # Note: orientation parameters have the viewing angle as the parameter + # value and the jitter in the distribution, so be sure to set the + # empty pd for orientation parameters to 0. + pd = [value if relative else 0.0], [1.0] + else: + limits = parameter.limits + pd = weights.get_weights(distribution, npts, width, nsigma, + value, limits, relative) else: - limits = parameter.limits - disperser = values.get(parameter.name+'_pd_type', 'gaussian') - nsigma = values.get(parameter.name+'_pd_nsigma', 3.0) - pd = weights.get_weights(disperser, npts, width, nsigma, - value, limits, relative) + pd = [value], [1.0] return value, pd[0], pd[1] -def _vol_pars(model_info, values): - # type: (ModelInfo, ParameterSet) -> Tuple[np.ndarray, np.ndarray] - vol_pars = [_get_par_weights(p, values) - for p in model_info.parameters.call_parameters - if p.type == 'volume'] - #import pylab; pylab.plot(vol_pars[0][0],vol_pars[0][1]); pylab.show() - dispersity, weight = dispersion_mesh(model_info, vol_pars) - return dispersity, weight - - def _make_sesans_transform(data): # Pre-compute the Hankel matrix (H) SElength, SEunits = data.x, data._xunit @@ -260,10 +256,11 @@ def _interpret_data(self, data: Data, model: KernelModel) -> None: else: res = resolution.Perfect1D(q) elif (getattr(data, 'dxl', None) is not None - and getattr(data, 'dxw', None) is not None): - res = resolution.Slit1D(data.x[index], - qx_width=data.dxl[index], - qy_width=data.dxw[index]) + or getattr(data, 'dxw', None) is not None): + res = resolution.Slit1D( + data.x[index], + q_length=None if data.dxl is None else data.dxl[index], + q_width=None if data.dxw is None else data.dxw[index]) else: res = resolution.Perfect1D(data.x[index]) elif self.data_type == 'Iq-oriented': @@ -278,9 +275,10 @@ def _interpret_data(self, data: Data, model: KernelModel) -> None: or getattr(data, 'dxw', None) is None): raise ValueError("oriented sample with 1D data needs slit resolution") - res = resolution2d.Slit2D(data.x[index], - qx_width=data.dxw[index], - qy_width=data.dxl[index]) + res = resolution2d.Slit2D( + data.x[index], + qx_width=data.dxw[index], + qy_width=data.dxl[index]) else: raise ValueError("Unknown data type") # never gets here @@ -456,6 +454,70 @@ def test_reparameterize(): except Exception: pass +def _direct_calculate(model, data, pars): + from .core import load_model_info, build_model + model_info = load_model_info(model) + kernel = build_model(model_info) + calculator = DirectModel(data, kernel) + return calculator(**pars) + +def Iq(model, q, dq=None, ql=None, qw=None, **pars): + """ + Compute I(q) for *model*. Resolution is *dq* for pinhole or *ql* and *qw* + for slit geometry. Use 0 or None for infinite slits. + + Model is the name of a builtin or custom model, or a model expression, such + as sphere+sphere for a mixture of spheres of different radii, or + sphere@hardsphere for concentrated solutions where the dilute approximation + no longer applies. + + Use additional keywords for model parameters, tagged with *_pd*, *_pd_n*, + *_pd_nsigma*, *_pd_type* to set polydispersity parameters, or *_M0*, + *_mphi*, *_mtheta* for magnetic parameters. + + This is not intended for use when the same I(q) is evaluated many times + with different parameter values. For that you should set up the model + with `model = build_model(load_model_info(model_name))`, set up a data + object to define q values and resolution, then use + `calculator = DirectModel(data, model)` to set up a calculator, or + `problem = bumps.FitProblem(sasmodels.bumps_model.Experiment(data, model))` + to define a fit problem for uses with the bumps optimizer. Data can be + loaded using the `sasdata` package, or use one of the empty data generators + from `sasmodels.data`. + + Models are cached. Custom models will not be reloaded even if the + underlying files have changed. If you are using this in a long running + application then you will need to call + `sasmodels.direct_model._model_cache.clear()` to reset the cache and force + custom model reload. + """ + from .data import Data1D, _as_numpy + data = Data1D(x=q, dx=dq) + def broadcast(v): + return ( + None if v is None + else np.full(len(q), v) if np.isscalar(v) + else _as_numpy(v)) + data.dxl, data.dxw = broadcast(ql), broadcast(qw) + return _direct_calculate(model, data, pars) + +def Iqxy(model, qx, qy, dqx=None, dqy=None, **pars): + """ + Compute I(qx, qy) for *model*. Resolution is *dqx* and *dqy*. + See :func:`Iq` for details on model and parameters. + """ + from .data import Data2D + data = Data2D(x=qx, y=qy, dx=dqx, dy=dqy) + return _direct_calculate(model, data, pars) + +def Gxi(model, xi, **pars): + """ + Compute SESANS correlation G' = G(xi) - G(0) for *model*. + See :func:`Iq` for details on model and parameters. + """ + from .data import empty_sesans + data = empty_sesans(z=xi) + return _direct_calculate(model, data, pars) def main(): # type: () -> None @@ -463,36 +525,71 @@ def main(): Program to evaluate a particular model at a set of q values. """ import sys - from .data import empty_data1D, empty_data2D - from .core import load_model_info, build_model if len(sys.argv) < 3: print("usage: python -m sasmodels.direct_model modelname (q|qx,qy) par=val ...") sys.exit(1) - model_name = sys.argv[1] + model = sys.argv[1] call = sys.argv[2].upper() + pars = dict((k, (float(v) if not k.endswith("_pd_type") else v)) + for pair in sys.argv[3:] + for k, v in [pair.split('=')]) try: values = [float(v) for v in call.split(',')] except ValueError: values = [] if len(values) == 1: q, = values - data = empty_data1D([q]) + dq = dqw = dql = None + #dq = [q*0.05] # 5% pinhole resolution + #dqw, dql = [q*0.05], [1.0] # 5% horizontal slit resolution + print(Iq(model, [q], dq=dq, qw=dqw, ql=dql, **pars)[0]) + #print(Gxi(model, [q], **pars)[0]) elif len(values) == 2: qx, qy = values - data = empty_data2D([qx], [qy]) + dq = None + #dq = [0.005] # 5% pinhole resolution at q = 0.1 + print(Iqxy(model, [qx], [qy], dqx=dq, dqy=dq, **pars)[0]) else: print("use q or qx,qy") sys.exit(1) - model_info = load_model_info(model_name) - model = build_model(model_info) - calculator = DirectModel(data, model) - pars = dict((k, (float(v) if not k.endswith("_pd_type") else v)) - for pair in sys.argv[3:] - for k, v in [pair.split('=')]) - Iq = calculator(**pars) - print(Iq[0]) +def test_simple_interface(): + def near(value, target): + """Close enough in single precision""" + #print(f"value: {value}, target: {target}") + return np.allclose(value, target, rtol=1e-6, atol=0, equal_nan=True) + # Note: target values taken from running main() on parameters. + # Resolution was 5% dq/q. + pars = dict(radius=200) + # simple sphere in 1D (perfect, pinhole, slit) + assert near(Iq('sphere', [0.1], **pars), [0.6200146273894904]) + assert near(Iq('sphere', [0.1], dq=[0.005], **pars), [2.3019224683980215]) + assert near(Iq('sphere', [0.1], qw=[0.005], ql=[1.0], **pars), [0.3673431784535172]) + # simple sphere in 2D (perfect, pinhole) + assert near(Iqxy('sphere', [0.1], [0.1], **pars), [1.1781532874802199]) + assert near(Iqxy('sphere', [0.1], [0.1], dqx=[0.005], dqy=[0.005], **pars), + [0.8177780778578667]) + # sesans + assert near(Gxi('sphere', [100], **pars), [-0.19146959126623486]) + # Check that single point sesans matches value in an array + xi = np.logspace(1, 3, 100) + y = Gxi('sphere', xi, **pars) + for k in (0, len(xi)//5, len(xi)//2, len(xi)-1): + ysingle = Gxi('sphere', [xi[k]], **pars)[0] + print(f"SESANS point check {k}: xi={xi[k]:.1f} single={ysingle:.4f} vector={y[k]:.4f}") + assert abs((ysingle-y[k])/y[k]) < 0.1, "SESANS point value not matching vector value within 10%" + # magnetic 2D + pars = dict(radius=200, sld_M0=3, sld_mtheta=30) + assert near(Iqxy('sphere', [0.1], [0.1], **pars), [1.5577852226925908]) + # polydisperse 1D + pars = dict( + radius=200, radius_pd=0.1, radius_pd_n=15, radius_pd_nsigma=2.5, + radius_pd_type="uniform") + assert near(Iq('sphere', [0.1], **pars), [2.703169824954617]) if __name__ == "__main__": + import logging + logging.disable(logging.ERROR) main() + #test_simple_interface() diff --git a/sasmodels/resolution.py b/sasmodels/resolution.py index 16ad9e33..5c3ec860 100644 --- a/sasmodels/resolution.py +++ b/sasmodels/resolution.py @@ -124,25 +124,31 @@ class Slit1D(Resolution): """ - def __init__(self, q, q_length, q_width=0., q_calc=None): + def __init__(self, q, q_length=None, q_width=None, q_calc=None): # Remember what width/dqy was used even though we won't need them # after the weight matrix is constructed self.q_length, self.q_width = q_length, q_width # Allow independent resolution on each point even though it is not # needed in practice. - if np.isscalar(q_width): + if q_width is None: + q_width = np.zeros(len(q)) + elif np.isscalar(q_width): q_width = np.ones(len(q))*q_width else: q_width = np.asarray(q_width) - if np.isscalar(q_length): + if q_length is None: + q_length = np.zeros(len(q)) + elif np.isscalar(q_length): q_length = np.ones(len(q))*q_length else: q_length = np.asarray(q_length) self.q = q.flatten() - self.q_calc = slit_extend_q(q, q_width, q_length) \ + self.q_calc = ( + slit_extend_q(q, q_width, q_length) if q_calc is None else np.sort(q_calc) + ) # Protect against models which are not defined for very low q. Limit # the smallest q value evaluated (in absolute) to 0.02*min @@ -150,8 +156,9 @@ def __init__(self, q, q_length, q_width=0., q_calc=None): self.q_calc = self.q_calc[abs(self.q_calc) >= cutoff] # Build weight matrix from calculated q values - self.weight_matrix = \ + self.weight_matrix = ( slit_resolution(self.q_calc, self.q, q_width, q_length) + ) self.q_calc = abs(self.q_calc) def apply(self, theory): @@ -450,12 +457,14 @@ def linear_extrapolation(q, q_min, q_max): """ q = np.sort(q) if q_min + 2*MINIMUM_RESOLUTION < q[0]: - n_low = int(np.ceil((q[0]-q_min) / (q[1]-q[0]))) if q[1] > q[0] else 15 + delta = q[1] - q[0] if len(q) > 1 else 0 + n_low = int(np.ceil((q[0]-q_min) / delta)) if delta > 0 else 15 q_low = np.linspace(q_min, q[0], n_low+1)[:-1] else: q_low = [] if q_max - 2*MINIMUM_RESOLUTION > q[-1]: - n_high = int(np.ceil((q_max-q[-1]) / (q[-1]-q[-2]))) if q[-1] > q[-2] else 15 + delta = q[-1] - q[-2] if len(q) > 1 else 0 + n_high = int(np.ceil((q_max-q[-1]) / delta)) if delta > 0 else 15 q_high = np.linspace(q[-1], q_max, n_high+1)[1:] else: q_high = [] @@ -495,21 +504,26 @@ def geometric_extrapolation(q, q_min, q_max, points_per_decade=None): n_\text{extend} = (n-1) (\log q_\text{max} - \log q_n) / (\log q_n - \log q_1) """ + DEFAULT_POINTS_PER_DECADE = 10 q = np.sort(q) + data_min, data_max = q[0], q[-1] if points_per_decade is None: - log_delta_q = (len(q) - 1) / (log(q[-1]) - log(q[0])) + if data_max > data_min: + log_delta_q = (len(q) - 1) / (log(data_max) - log(data_min)) + else: + log_delta_q = log(10.) / DEFAULT_POINTS_PER_DECADE else: log_delta_q = log(10.) / points_per_decade - if q_min < q[0]: + if q_min < data_min: if q_min < 0: - q_min = q[0]*MINIMUM_ABSOLUTE_Q + q_min = data_min*MINIMUM_ABSOLUTE_Q n_low = int(np.ceil(log_delta_q * (log(q[0])-log(q_min)))) q_low = np.logspace(log10(q_min), log10(q[0]), n_low+1)[:-1] else: q_low = [] - if q_max > q[-1]: - n_high = int(np.ceil(log_delta_q * (log(q_max)-log(q[-1])))) - q_high = np.logspace(log10(q[-1]), log10(q_max), n_high+1)[1:] + if q_max > data_max: + n_high = int(np.ceil(log_delta_q * (log(q_max)-log(data_max)))) + q_high = np.logspace(log10(data_max), log10(q_max), n_high+1)[1:] else: q_high = [] return np.concatenate([q_low, q, q_high]) diff --git a/sasmodels/sesans.py b/sasmodels/sesans.py index 8eb65d2d..b4bc6cab 100644 --- a/sasmodels/sesans.py +++ b/sasmodels/sesans.py @@ -60,10 +60,18 @@ def apply(self, Iq): def _set_hankel(self, SElength, lam, zaccept, Rmax): # type: (np.ndarray, float, float, float) -> None SElength = np.asarray(SElength) - q_max = 2*pi / (SElength[1] - SElength[0]) - q_min = 0.1 * 2*pi / (np.size(SElength) * SElength[-1]) + if len(SElength) == 1: + # TODO: Do we care that this fails for xi = 0? + q_min, q_max = 0.01 * 2*pi/SElength[-1], 10*2*pi / SElength[0] + else: + # TODO: Why does q_min depend on the number of correlation lengths? + # TODO: Why does q_max depend on the correlation step size? + q_min = 0.1 * 2*pi / (np.size(SElength) * SElength[-1]) + q_max = 2*pi / (SElength[1] - SElength[0]) + #print("Hankel xi, Qmin, Qmax", SElength[0], q_min, q_max, len(SElength)) q = np.exp(np.arange(np.log(q_min), np.log(q_max), np.log(self.log_spacing))) + #print(q) dq = np.diff(q) dq = np.insert(dq, 0, dq[0]) @@ -75,9 +83,17 @@ def _set_hankel(self, SElength, lam, zaccept, Rmax): H *= (dq * q / (2*pi)).reshape((-1, 1)) reptheta = np.outer(q, lam/(2*pi)) - np.arcsin(reptheta, out=reptheta) - mask = reptheta > zaccept + # Note: Using inplace update with reptheta => arcsin(reptheta). + # When q L / 2 pi > 1 that means wavelength is too large to + # reach that q value at any angle. These should produce theta = NaN + # without any warnings. + with np.errstate(invalid='ignore'): + np.arcsin(reptheta, out=reptheta) + # Reverse the condition to protect against NaN. We can't use + # theta > zaccept since all comparisons with NaN return False. + mask = ~(reptheta <= zaccept) H[mask] = 0 + #print("number of masked points", np.sum(mask)) self.q_calc = q self._H, self._H0 = H, H0 diff --git a/sasmodels/weights.py b/sasmodels/weights.py index ab0d126e..65a30c35 100644 --- a/sasmodels/weights.py +++ b/sasmodels/weights.py @@ -303,15 +303,21 @@ def plot_weights(model_info, mesh): for each parameter, where (*dispersity*, *weights*) pairs are the distributions to be plotted. """ - import pylab - + import matplotlib.pyplot as plt if any(len(dispersity) > 1 for value, dispersity, weights in mesh): labels = [p.name for p in model_info.parameters.call_parameters] - #pylab.interactive(True) - pylab.figure() + #plt.interactive(True) + plt.figure() for (_, x, w), s in zip(mesh, labels): if len(x) > 1: - pylab.plot(x, w, '-o', label=s) - pylab.grid(True) - pylab.legend() - #pylab.show() + # For plotting probability rather than weight scale by dx + #dx = np.hstack((x[1]-x[0], (x[2:] - x[:-2])/2, x[-1] - x[-2])) + #plt.plot(x, w/dx, '-o', label=s) + plt.plot(x, w, '-o', label=s) + plt.title("Distributions for polydisperse parameters") + plt.xlabel("parameter value") + #plt.ylabel("probability") + plt.ylabel("relative weight") + plt.grid(True) + plt.legend() + #plt.show()