-
Notifications
You must be signed in to change notification settings - Fork 0
/
leet705_Design_HashSet.py
100 lines (79 loc) · 3.34 KB
/
leet705_Design_HashSet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# Design a HashSet without using any built-in hash table libraries.
# Implement MyHashSet class:
# void add(key) Inserts the value key into the HashSet.
# bool contains(key) Returns whether the value key exists in the HashSet or not.
# void remove(key) Removes the value key in the HashSet. If key does not exist in the HashSet, do nothing.
# Example 1:
# Input
# ["MyHashSet", "add", "add", "contains", "contains", "add", "contains", "remove", "contains"]
# [[], [1], [2], [1], [3], [2], [2], [2], [2]]
# Output
# [null, null, null, true, false, null, true, null, false]
# Explanation
# MyHashSet myHashSet = new MyHashSet();
# myHashSet.add(1); // set = [1]
# myHashSet.add(2); // set = [1, 2]
# myHashSet.contains(1); // return True
# myHashSet.contains(3); // return False, (not found)
# myHashSet.add(2); // set = [1, 2]
# myHashSet.contains(2); // return True
# myHashSet.remove(2); // set = [1]
# myHashSet.contains(2); // return False, (already removed)
# Constraints:
# 0 <= key <= 106
# At most 104 calls will be made to add, remove, and contains.
# // Time Complexity : O(1) for all operations
# // Space Complexity : O(n) since in worst case all the keys are saved in hashset
# // Did this code successfully run on Leetcode : Yes
# // Any problem you faced while coding this : Squareroot, Floor and Ceil was not used at right spot
# // Your code here along with comments explaining your approach
# Approach is to used double hashing technique so that we can split the total entries into buckets
# Using key modulus with sqrt(n) to get the position in main array, then use key/sqrt(n) to find position in bucket array
# This helps avoiding collision while we are still able to access values in O(1) time complexity
# Solution
from math import sqrt
from math import ceil
from math import floor
class MyHashSet:
def __init__(self):
self.offset = ceil(sqrt(1000000))
self.binArray = [None for _ in range(0,self.offset)]
def add(self, key: int) -> None:
arr1Offset = key%self.offset
arr2Offset = floor(key/self.offset)
if self.binArray[arr1Offset] == None:
if arr1Offset == 0:
self.binArray[arr1Offset] = [False for _ in range(0,self.offset+1)]
else:
self.binArray[arr1Offset] = [False for _ in range(0,self.offset)]
self.binArray[arr1Offset][arr2Offset] = True
else:
self.binArray[arr1Offset][arr2Offset] = True
def remove(self, key: int) -> None:
arr1Offset = key%self.offset
arr2Offset = floor(key/self.offset)
if self.binArray[arr1Offset] != None:
self.binArray[arr1Offset][arr2Offset] = False
def contains(self, key: int) -> bool:
arr1Offset = key%self.offset
arr2Offset = floor(key/self.offset)
if self.binArray[arr1Offset] == None:
return False
elif self.binArray[arr1Offset][arr2Offset] == True:
return True
return False
if __name__ == "__main__":
obj = MyHashSet()
obj.add(1)
obj.add(2)
print(obj.contains(1))
print(obj.contains(3))
obj.add(2)
print(obj.contains(2))
obj.remove(2)
print(obj.contains(2))
# Your MyHashSet object will be instantiated and called as such:
# obj = MyHashSet()
# obj.add(key)
# obj.remove(key)
# param_3 = obj.contains(key)