forked from TheAlgorithms/JavaScript
-
Notifications
You must be signed in to change notification settings - Fork 0
/
BinaryInsertionSort.js
60 lines (55 loc) · 1.54 KB
/
BinaryInsertionSort.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
/**
* Pure Implementation of Binary Search Algorithm
*
* Binary insertion sort is a sorting algorithm similar to insertion sort,
* but instead of using linear search to find the position
* where the element should be inserted, we use binary search.
* Thus, we reduce the number of comparisons for inserting one element from O(N)
* (Time complexity in Insertion Sort) to O(log N).
*
*/
/**
* Search the key element in the array from start position to end position.
*
* @param {Array} array Array of numbers.
* @param {Number} key Value to be searched
* @param {Number} start start index position of array
* @param {Number} end end index position of array
* @return {Number} Position of the key element
*/
function binarySearch (array, key, start, end) {
if (start === end) {
if (array[start] > key) {
return start
} else {
return start + 1
}
}
if (start > end) {
return start
}
const mid = Math.floor((start + end) / 2)
if (array[mid] < key) {
return binarySearch(array, key, mid + 1, end)
} else if (array[mid] > key) {
return binarySearch(array, key, start, mid - 1)
} else {
return mid
}
}
/**
* Binary Insertion Sort
*
* @param {Array} list List to be sorted.
* @return {Array} The sorted list.
*/
export function binaryInsertionSort (array) {
const totalLength = array.length
for (let i = 1; i < totalLength; i += 1) {
const key = array[i]
const indexPosition = binarySearch(array, key, 0, i - 1)
array.splice(i, 1)
array.splice(indexPosition, 0, key)
}
return array
}