-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStack_Linear_Layer.py
32 lines (25 loc) · 994 Bytes
/
Stack_Linear_Layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
# Reference: https://numpy.org/doc/stable/reference/generated/numpy.loadtxt.html
import torch
import torch.nn as nn
DE_data = np.loadtxt("DE_result.csv", delimiter=",", skiprows=1)
input_tensor = torch.from_numpy(DE_data)
import numpy as np
pred_model = nn.Sequential(
nn.Linear(in_features=input_tensor.shape[1], out_features=100),
nn.Linear(in_features=100, out_features=70),
nn.Linear(in_features=70, out_features=30),
nn.Linear(in_features=30, out_features=1),
nn.Sigmoid()
)
pred_result = pred_model(input_tensor)
print(pred_result)
num_class = 6
pred_model_2 = nn.Sequential(
nn.Linear(in_features=input_tensor.shape[1], out_features=100),
nn.Linear(in_features=100, out_features=70),
nn.Linear(in_features=70, out_features=30),
nn.Linear(in_features=30, out_features=num_class), # predictions for the multi-class (6-class) phenotype classification
nn.Softmax(dim=-1)
)
pred_result_2 = pred_model_2(input_tensor)
print(pred_result_2)