You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I know you want users to file bug reports at https://sourceforge.net/p/scidavis/scidavis-bugs/, but I am not going to create an account on this crappy platform just to file a bug. So sorry, but I think reporting it here is better than not reporting it at all.
The bug itself:
Take the following data set (columns X, Y, and Yerr):
0.002083333333333333 0.03333333333333333 0.003333333333333334
0.00101010101010101 0.02105263157894737 0.001329639889196676
0.0006802721088435374 0.01754385964912281 0.0009233610341643582
0.0005076142131979696 0.01538461538461539 0.0007100591715976331
0.0002645502645502646 0.01282051282051282 0.0004930966469428008
0.000209643605870021 0.01219512195121951 0.000446162998215348
9.900990099009902e-05 0.01111111111111111 0.0003703703703703704
7.204610951008646e-05 0.0108695652173913 0.0003544423440453686
4.566210045662101e-05 0.01052631578947368 0.000332409972299169
1.464128843338214e-05 0.01025641025641026 0.0003155818540433925
Do a scatter-plot and then Analysis->Quick Fit->Linear Fit. The result is
Linear Regression fit of dataset: Table3_2, using function: A*x+B
Y standard errors: Associated dataset (Table3_3)
From x = 1,46412884333821e-05 to x = 0,00208333333333333
B (y-intercept) = 0,00980827992195652 +/- 0,000236890270620361
A (slope) = 11,2640343431007 +/- 0,212197222336419
Chi^2 = 0,565129788016921
R^2 = 0,999799482369171
Now take the following set (columns X, Y, and Yerr):
1.464128843338214e-05 0.01025641025641026 0.003333333333333334
4.566210045662101e-05 0.01052631578947368 0.001329639889196676
7.204610951008646e-05 0.0108695652173913 0.0009233610341643582
9.900990099009902e-05 0.01111111111111111 0.0007100591715976331
0.000209643605870021 0.01219512195121951 0.0004930966469428008
0.0002645502645502646 0.01282051282051282 0.000446162998215348
0.0005076142131979696 0.01538461538461539 0.0003703703703703704
0.0006802721088435374 0.01754385964912281 0.0003544423440453686
0.00101010101010101 0.02105263157894737 0.000332409972299169
0.002083333333333333 0.03333333333333333 0.0003155818540433925
it is the same set, but columns X (and Y) sorted based on X. The Yerr column is left as it is.
This gives:
Linear Regression fit of dataset: Table3_2, using function: A*x+B
Y standard errors: Associated dataset (Table3_3)
From x = 1,46412884333821e-05 to x = 0,00208333333333333
B (y-intercept) = 0,00980827992195652 +/- 0,000236890270620361
A (slope) = 11,2640343431007 +/- 0,212197222336419
Chi^2 = 0,565129788016854
R^2 = 0,999799482369171
and thus somehow exactly the same A and B as the first data set, although the Y errors are mirrored.
It thus seems that when fitting SciDavis sorts the (x, y) points based on x, but not Yerr, thus giving an incorrect result if the data points are not sorted in the first place. The correct result for the first dataset should be
Linear Regression fit of dataset: Table3_2, using function: A*x+B
Y standard errors: Associated dataset (Table3_3)
From x = 1,46412884333821e-05 to x = 0,00208333333333333
B (y-intercept) = 0,0100413916386931 +/- 0,00017921733049076
A (slope) = 10,8089294839438 +/- 0,755079620620623
Chi^2 = 0,268194440672359
R^2 = 0,998692920890892
Desktop (please complete the following information):
I am using SciDavis 2.4.0 on windows 10.
The text was updated successfully, but these errors were encountered:
I know you want users to file bug reports at https://sourceforge.net/p/scidavis/scidavis-bugs/, but I am not going to create an account on this crappy platform just to file a bug. So sorry, but I think reporting it here is better than not reporting it at all.
The bug itself:
Take the following data set (columns X, Y, and Yerr):
0.002083333333333333 0.03333333333333333 0.003333333333333334
0.00101010101010101 0.02105263157894737 0.001329639889196676
0.0006802721088435374 0.01754385964912281 0.0009233610341643582
0.0005076142131979696 0.01538461538461539 0.0007100591715976331
0.0002645502645502646 0.01282051282051282 0.0004930966469428008
0.000209643605870021 0.01219512195121951 0.000446162998215348
9.900990099009902e-05 0.01111111111111111 0.0003703703703703704
7.204610951008646e-05 0.0108695652173913 0.0003544423440453686
4.566210045662101e-05 0.01052631578947368 0.000332409972299169
1.464128843338214e-05 0.01025641025641026 0.0003155818540433925
Do a scatter-plot and then Analysis->Quick Fit->Linear Fit. The result is
Linear Regression fit of dataset: Table3_2, using function: A*x+B
Y standard errors: Associated dataset (Table3_3)
From x = 1,46412884333821e-05 to x = 0,00208333333333333
B (y-intercept) = 0,00980827992195652 +/- 0,000236890270620361
A (slope) = 11,2640343431007 +/- 0,212197222336419
Chi^2 = 0,565129788016921
R^2 = 0,999799482369171
Now take the following set (columns X, Y, and Yerr):
1.464128843338214e-05 0.01025641025641026 0.003333333333333334
4.566210045662101e-05 0.01052631578947368 0.001329639889196676
7.204610951008646e-05 0.0108695652173913 0.0009233610341643582
9.900990099009902e-05 0.01111111111111111 0.0007100591715976331
0.000209643605870021 0.01219512195121951 0.0004930966469428008
0.0002645502645502646 0.01282051282051282 0.000446162998215348
0.0005076142131979696 0.01538461538461539 0.0003703703703703704
0.0006802721088435374 0.01754385964912281 0.0003544423440453686
0.00101010101010101 0.02105263157894737 0.000332409972299169
0.002083333333333333 0.03333333333333333 0.0003155818540433925
it is the same set, but columns X (and Y) sorted based on X. The Yerr column is left as it is.
This gives:
Linear Regression fit of dataset: Table3_2, using function: A*x+B
Y standard errors: Associated dataset (Table3_3)
From x = 1,46412884333821e-05 to x = 0,00208333333333333
B (y-intercept) = 0,00980827992195652 +/- 0,000236890270620361
A (slope) = 11,2640343431007 +/- 0,212197222336419
Chi^2 = 0,565129788016854
R^2 = 0,999799482369171
and thus somehow exactly the same A and B as the first data set, although the Y errors are mirrored.
It thus seems that when fitting SciDavis sorts the (x, y) points based on x, but not Yerr, thus giving an incorrect result if the data points are not sorted in the first place. The correct result for the first dataset should be
Linear Regression fit of dataset: Table3_2, using function: A*x+B
Y standard errors: Associated dataset (Table3_3)
From x = 1,46412884333821e-05 to x = 0,00208333333333333
B (y-intercept) = 0,0100413916386931 +/- 0,00017921733049076
A (slope) = 10,8089294839438 +/- 0,755079620620623
Chi^2 = 0,268194440672359
R^2 = 0,998692920890892
Desktop (please complete the following information):
I am using SciDavis 2.4.0 on windows 10.
The text was updated successfully, but these errors were encountered: