From 5ab2a62549c4d7ecda2c5098301c5355cf76b178 Mon Sep 17 00:00:00 2001 From: JuliusMartensen Date: Fri, 2 Jul 2021 20:41:44 +0200 Subject: [PATCH] v0.6.1 * Document sparse regression * Add eval_expression to solve and build_solutions * Update wrong sizing in tests * v0.6.1 --- Project.toml | 2 +- docs/src/prob_and_solve.md | 12 +++++++ src/optimizers/sparseregression.jl | 12 +++++-- src/solution.jl | 56 +++++++++++++++++++----------- src/solve/koopman.jl | 6 ++-- src/solve/sindy.jl | 8 +++-- test/dmd/linear_autonomous.jl | 14 ++++++-- test/dmd/nonlinear_autonomous.jl | 4 +-- test/dmd/nonlinear_forced.jl | 4 +-- 9 files changed, 83 insertions(+), 35 deletions(-) diff --git a/Project.toml b/Project.toml index e1d96a9f5..18bd4434c 100644 --- a/Project.toml +++ b/Project.toml @@ -1,7 +1,7 @@ name = "DataDrivenDiffEq" uuid = "2445eb08-9709-466a-b3fc-47e12bd697a2" authors = ["Julius Martensen "] -version = "0.6.0" +version = "0.6.1" [deps] Compat = "34da2185-b29b-5c13-b0c7-acf172513d20" diff --git a/docs/src/prob_and_solve.md b/docs/src/prob_and_solve.md index 73b23720f..915ba4fd0 100644 --- a/docs/src/prob_and_solve.md +++ b/docs/src/prob_and_solve.md @@ -67,6 +67,15 @@ ps = parameter_map(res) ## [Optional Arguments](@id optional_arguments) +!!! info +The keyword argument `eval_expression` controls the function creation +behavior. `eval_expression=true` means that `eval` is used, so normal +world-age behavior applies (i.e. the functions cannot be called from +the function that generates them). If `eval_expression=false`, +then construction via GeneralizedGenerated.jl is utilized to allow for +same world-age evaluation. However, this can cause Julia to segfault +on sufficiently large basis functions. By default eval_expression=false. + Koopman based algorithms can be called without a [`Basis`](@ref), resulting in dynamic mode decomposition like methods, or with a basis for extened dynamic mode decomposition : ```julia @@ -81,6 +90,9 @@ Possible keyworded arguments include + `digits` controls the digits / rounding used for deriving the system equations (`digits = 1` would round `10.02` to `10.0`) + `operator_only` returns a `NamedTuple` containing the operator, input and output mapping and matrices used for updating the operator as described [here](https://arxiv.org/pdf/1406.7187.pdf) +!!! info +If `eval_expression` is set to `true`, the returning result of the Koopman based inference will not contain a parametrized equation, but rather use the numeric values of the operator/generator. + SINDy based algorithms can be called like : ```julia diff --git a/src/optimizers/sparseregression.jl b/src/optimizers/sparseregression.jl index e86266708..fc7bca917 100644 --- a/src/optimizers/sparseregression.jl +++ b/src/optimizers/sparseregression.jl @@ -3,11 +3,17 @@ $(SIGNATURES) Implements a sparse regression, given an `AbstractOptimizer` or `AbstractSubspaceOptimizer`. -`maxiter` indicate the maximum iterations for each call of the optimizer, `abstol` the absolute tolerance of +`X` denotes the coefficient matrix, `A` the design matrix and `Y` the matrix of observed or target values. +`X` can be derived via `init(opt, A, Y)`. +`maxiter` indicates the maximum iterations for each call of the optimizer, `abstol` the absolute tolerance of the difference between iterations in the 2 norm. If the optimizer is called with a `Vector` of thresholds, each `maxiter` indicates the maximum iterations for each threshold. -If `progress` is set to `true`, a progressbar will be available. +If `progress` is set to `true`, a progressbar will be available. `progress_outer` and `progress_offset` are used to compute the initial offset of the +progressbar. + +If used with a `Vector` of thresholds, the functions `f` with signature `f(X, A, Y)` and `g` with signature `g(x, threshold) = G(f(X, A, Y))` with the arguments given as stated above can be passed in. These are +used for finding the pareto-optimal solution to the sparse regression. """ function sparse_regression!(X, A, Y, opt::AbstractOptimizer{T}; maxiter::Int = maximum(size(A)), @@ -83,7 +89,7 @@ function sparse_regression!(X, A, Y, opt::AbstractOptimizer{T}; ) end end - + for i in 1:size(Y, 2) @views clip_by_threshold!(X[:, i], λs[i]) end diff --git a/src/solution.jl b/src/solution.jl index 7d927c832..ea696b1d1 100644 --- a/src/solution.jl +++ b/src/solution.jl @@ -108,7 +108,7 @@ function Base.print(io::IO, r::DataDrivenSolution, fullview::DataType) println(io, "") print(io, r.res) println(io, "") - if length(r.res.ps) > 0 + if length(r.res.ps) > 0 x = parameter_map(r) println(io, "Parameters:") for v in x @@ -154,14 +154,15 @@ end # Explicit sindy -function build_solution(prob::DataDrivenProblem, Ξ::AbstractMatrix, opt::Optimize.AbstractOptimizer, b::Basis) +function build_solution(prob::DataDrivenProblem, Ξ::AbstractMatrix, opt::Optimize.AbstractOptimizer, b::Basis; + eval_expression = false) if all(iszero(Ξ)) @warn "Sparse regression failed! All coefficients are zero." return DataDrivenSolution( - nothing , :failed, nothing, opt, Ξ, (Problem = prob, Basis = b, nothing), + nothing , :failed, nothing, opt, Ξ, (Problem = prob, Basis = b, nothing), ) end - + eqs, ps, p_ = build_parametrized_eqs(Ξ, b) # Build the lhs @@ -176,7 +177,8 @@ function build_solution(prob::DataDrivenProblem, Ξ::AbstractMatrix, opt::Optimi eqs, states(b), parameters = [parameters(b); p_], iv = independent_variable(b), controls = controls(b), observed = observed(b), - name = gensym(:Basis) + name = gensym(:Basis), + eval_expression = eval_expression ) sparsity = norm(Ξ, 0) @@ -225,15 +227,15 @@ function build_solution(prob::DataDrivenProblem, Ξ::AbstractMatrix, opt::Optimi end function build_solution(prob::DataDrivenProblem, Ξ::AbstractMatrix, opt::Optimize.AbstractSubspaceOptimizer, - b::Basis, implicits::Vector{Num}) + b::Basis, implicits::Vector{Num}; eval_expression = false) if all(iszero(Ξ)) @warn "Sparse regression failed! All coefficients are zero." return DataDrivenSolution( - nothing , :failed, nothing, opt, Ξ, (Problem = prob, Basis = b, nothing), + nothing , :failed, nothing, opt, Ξ, (Problem = prob, Basis = b, nothing), ) end - + eqs, ps, p_ = build_parametrized_eqs(Ξ, b) eqs = [0 .~ eq for eq in eqs] @@ -242,7 +244,8 @@ function build_solution(prob::DataDrivenProblem, Ξ::AbstractMatrix, opt::Optimi eqs, states(b), parameters = [parameters(b); p_], iv = independent_variable(b), controls = controls(b), observed = observed(b), - name = gensym(:Basis) + name = gensym(:Basis), + eval_expression = eval_expression ) sparsity = norm(Ξ, 0) @@ -298,8 +301,8 @@ function _round!(x::AbstractArray{T, N}, digits::Int) where {T, N} end #function build_solution(prob::DataDrivenProblem, Ξ::AbstractMatrix, opt::AbstractKoopmanAlgorithm) -function build_solution(prob::DataDrivenProblem, k, C, B, Q, P, inds, b::AbstractBasis, alg::AbstractKoopmanAlgorithm; digits::Int = 10) - # Build parameterized equations +function build_solution(prob::DataDrivenProblem, k, C, B, Q, P, inds, b::AbstractBasis, alg::AbstractKoopmanAlgorithm; digits::Int = 10, eval_expression = false) + # Build parameterized equations, inds indicate the location of basis elements containing an input Ξ = zeros(eltype(B), size(C,2), length(b)) Ξ[:, inds] .= real.(Matrix(k)) @@ -308,7 +311,14 @@ function build_solution(prob::DataDrivenProblem, k, C, B, Q, P, inds, b::Abstrac end # Transpose because of the nature of build_parametrized_eqs - eqs, ps, p_ = build_parametrized_eqs(_round!(C*Ξ, digits)', b) + if !eval_expression + eqs, ps, p_ = build_parametrized_eqs(_round!(C*Ξ, digits)', b) + else + K̃ = _round!(C*Ξ, digits) + eqs = K̃*Num[states(b); controls(b)] + p_ = [] + ps = [K̃...] + end # Build the lhs if length(eqs) == length(states(b)) @@ -317,18 +327,25 @@ function build_solution(prob::DataDrivenProblem, k, C, B, Q, P, inds, b::Abstrac eqs = [d(xs[i]) ~ eq for (i,eq) in enumerate(eqs)] end + res_ = Koopman(eqs, states(b), parameters = [parameters(b); p_], controls = controls(b), iv = independent_variable(b), - K = k, C = C, Q = Q, P = P, lift = b.f) + K = k, C = C, Q = Q, P = P, lift = b.f, + eval_expression = eval_expression) - - retcode = :success - pnew = !isempty(parameters(b)) ? [prob.p; ps] : ps - # Equation space + retcode = :sucess X = prob.DX - X_, _, t, U = get_oop_args(prob) - Y = res_(X_, pnew, t, U) + X_, p_, t, U = get_oop_args(prob) + + pnew = !isempty(parameters(b)) ? [p_; ps] : ps + + if !eval_expression + # Equation space + Y = res_(X_, pnew, t, U) + else + Y = K̃*b(X_, p_, t, U) + end # Build the metrics error = norm(X-Y, 2) @@ -357,5 +374,4 @@ function build_solution(prob::DataDrivenProblem, k, C, B, Q, P, inds, b::Abstrac return DataDrivenSolution( res_, retcode, pnew, alg, Ξ, inputs, metrics ) - return K end diff --git a/src/solve/koopman.jl b/src/solve/koopman.jl index 4f532c0f5..8bea60534 100644 --- a/src/solve/koopman.jl +++ b/src/solve/koopman.jl @@ -1,6 +1,7 @@ function DiffEqBase.solve(prob::DataDrivenProblem{dType}, alg::AbstractKoopmanAlgorithm; B::AbstractArray = [], digits::Int = 10, operator_only::Bool = false, + eval_expression = false, kwargs...) where {dType <: Number} # Check the validity @assert is_valid(prob) "The problem seems to be ill-defined. Please check the problem definition." @@ -39,11 +40,12 @@ function DiffEqBase.solve(prob::DataDrivenProblem{dType}, alg::AbstractKoopmanAl operator_only && return (K = k, C = C, B = B, Q = Q, P = P) - return build_solution(prob, k, C, B, Q, P, inds, b, alg, digits = digits) + return build_solution(prob, k, C, B, Q, P, inds, b, alg, digits = digits, eval_expression = eval_expression) end function DiffEqBase.solve(prob::DataDrivenProblem{dType}, b::Basis, alg::AbstractKoopmanAlgorithm; digits::Int = 10, operator_only::Bool = false, + eval_expression = false, kwargs...) where {dType <: Number} # Check the validity @assert is_valid(prob) "The problem seems to be ill-defined. Please check the problem definition." @@ -98,5 +100,5 @@ function DiffEqBase.solve(prob::DataDrivenProblem{dType}, b::Basis, alg::Abstrac operator_only && return (K = k, C = C, B = B, Q = Q, P = P) - return build_solution(prob, k, C, B, Q, P, inds, b, alg, digits = digits) + return build_solution(prob, k, C, B, Q, P, inds, b, alg, digits = digits, eval_expression = eval_expression) end diff --git a/src/solve/sindy.jl b/src/solve/sindy.jl index b998c0537..0a9bf4e11 100644 --- a/src/solve/sindy.jl +++ b/src/solve/sindy.jl @@ -22,7 +22,8 @@ end # Main function DiffEqBase.solve(p::DataDrivenProblem{dType}, b::Basis, opt::Optimize.AbstractOptimizer; normalize::Bool = false, denoise::Bool = false, maxiter::Int = 0, - round::Bool = true, kwargs...) where {dType <: Number} + round::Bool = true, + eval_expression = false, kwargs...) where {dType <: Number} # Check the validity @assert is_valid(p) "The problem seems to be ill-defined. Please check the problem definition." @@ -48,7 +49,7 @@ function DiffEqBase.solve(p::DataDrivenProblem{dType}, b::Basis, opt::Optimize.A # Build solution Basis return build_solution( - p, Ξ, opt, b + p, Ξ, opt, b, eval_expression = eval_expression ) end @@ -78,6 +79,7 @@ end @views function DiffEqBase.solve(p::DataDrivenProblem{dType}, b::Basis, opt::Optimize.AbstractSubspaceOptimizer, implicits::Vector{Num} = Num[]; normalize::Bool = false, denoise::Bool = false, maxiter::Int = 0, + eval_expression = false, round::Bool = true, kwargs...) where {dType <: Number} # Check the validity @assert is_valid(p) "The problem seems to be ill-defined. Please check the problem definition." @@ -119,6 +121,6 @@ end normalize ? rescale_xi!(Ξ, scales, round) : nothing # Build solution Basis return build_solution( - p, Ξ, opt, b, implicits + p, Ξ, opt, b, implicits, eval_expression = eval_expression ) end diff --git a/test/dmd/linear_autonomous.jl b/test/dmd/linear_autonomous.jl index 568668b22..1e7345788 100644 --- a/test/dmd/linear_autonomous.jl +++ b/test/dmd/linear_autonomous.jl @@ -34,7 +34,7 @@ end u0 = [10.0; -20.0] prob = ODEProblem(f, u0, (0.0, 10.0)) sol = solve(prob, Tsit5(), saveat = 0.001) - + prob = DataDrivenProblem(sol) for alg in [DMDPINV(), DMDSVD(), TOTALDMD()] @@ -45,7 +45,7 @@ end @test isempty(estimator.B) res = solve(prob, alg , operator_only = false) m = metrics(res) - @test m.Error ./ size(X, 2) < 3e-1 + @test m.Error ./ size(sol, 2) < 3e-1 @test Matrix(result(res)) ≈ Matrix(estimator.K) end end @@ -74,6 +74,16 @@ end end end +@testset "Big System" begin + # Creates a big system which would resulting in a segfault otherwise + X = rand([0, 1], 128, 936); + T = collect(LinRange(0, 4.367058580858928, 936)); + problem = DiscreteDataDrivenProblem(X, T); + res1 = solve(problem, DMDSVD(), eval_expression = true) + res2 = solve(problem, DMDSVD(), operator_only = true) + @test Matrix(result(res1)) == real.(Matrix(res2.K)) +end + # TODO Include the Big System test # This fails to generate an equation right now... #@testset "Big System" begin diff --git a/test/dmd/nonlinear_autonomous.jl b/test/dmd/nonlinear_autonomous.jl index 286d7b8a1..9d02d7aa0 100644 --- a/test/dmd/nonlinear_autonomous.jl +++ b/test/dmd/nonlinear_autonomous.jl @@ -21,10 +21,10 @@ b = result(res) m = metrics(res) @test isapprox(eigvals(b), [2*p[1]; p[1]; p[2]], atol = 1e-1) - @test m.Error/size(X, 2) < 1e-1 + @test m.Error/size(solution, 2) < 1e-1 _prob = ODEProblem((args...)->b(args...), u0, tspan, parameters(res)) _sol = solve(_prob, Tsit5(), saveat = solution.t) - @test norm(solution - _sol)/size(X, 2) < 1e-1 + @test norm(solution - _sol)/size(solution, 2) < 1e-1 end end diff --git a/test/dmd/nonlinear_forced.jl b/test/dmd/nonlinear_forced.jl index 6ea158e9e..de92689fa 100644 --- a/test/dmd/nonlinear_forced.jl +++ b/test/dmd/nonlinear_forced.jl @@ -11,7 +11,7 @@ problem = ODEProblem(slow_manifold, u0, tspan, p) solution = solve(problem, Tsit5(), saveat = 0.01) - + ufun(u,p,t) = sin(t^2) prob = ContinuousDataDrivenProblem(solution, U = ufun) @@ -24,7 +24,7 @@ b = result(res) m = metrics(res) @test isapprox(eigvals(b), [2*p[1]; p[1]; p[2]], atol = 1e-1) - @test m.Error/size(X, 2) < 3e-1 + @test m.Error/size(solution, 2) < 3e-1 # TODO This does not work right now, but it should #sdict = Dict([y[1] => sin(t^2)])