diff --git a/test/symbolic_indexing_interface.jl b/test/symbolic_indexing_interface.jl new file mode 100644 index 0000000000..2acb04c986 --- /dev/null +++ b/test/symbolic_indexing_interface.jl @@ -0,0 +1,77 @@ +using ModelingToolkit, SymbolicIndexingInterface, SciMLBase + +@parameters t a b +@variables x(t) y(t) +D = Differential(t) +eqs = [D(x) ~ a * y + t, D(y) ~ b * t] +@named odesys = ODESystem(eqs, t, [x, y], [a, b]) + +@test all(is_variable.((odesys,), [x, y, 1, 2, :x, :y])) +@test all(.!is_variable.((odesys,), [a, b, t, 3, 0, :a, :b])) +@test variable_index.((odesys,), [x, y, a, b, t, 1, 2, :x, :y, :a, :b]) == [1, 2, nothing, nothing, nothing, 1, 2, 1, 2, nothing, nothing] +@test isequal(variable_symbols(odesys), [x, y]) +@test all(is_parameter.((odesys,), [a, b, 1, 2, :a, :b])) +@test all(.!is_parameter.((odesys,), [x, y, t, 3, 0, :x, :y])) +@test parameter_index.((odesys,), [x, y, a, b, t, 1, 2, :x, :y, :a, :b]) == [nothing, nothing, 1, 2, nothing, 1, 2, nothing, nothing, 1, 2] +@test isequal(parameter_symbols(odesys), [a, b]) +@test all(is_independent_variable.((odesys,), [t, :t])) +@test all(.!is_independent_variable.((odesys,), [x, y, a, :x, :y, :a])) +@test isequal(independent_variable_symbols(odesys), [t]) +@test is_time_dependent(odesys) +@test constant_structure(odesys) + +@variables x y z +@parameters σ ρ β + +eqs = [0 ~ σ*(y-x), + 0 ~ x*(ρ-z)-y, + 0 ~ x*y - β*z] +@named ns = NonlinearSystem(eqs, [x,y,z],[σ,ρ,β]) + +@test !is_time_dependent(ns) + +@parameters x +@variables t u(..) +Dxx = Differential(x)^2 +Dtt = Differential(t)^2 +Dt = Differential(t) + +#2D PDE +C=1 +eq = Dtt(u(t,x)) ~ C^2*Dxx(u(t,x)) + +# Initial and boundary conditions +bcs = [u(t,0) ~ 0.,# for all t > 0 + u(t,1) ~ 0.,# for all t > 0 + u(0,x) ~ x*(1. - x), #for all 0 < x < 1 + Dt(u(0,x)) ~ 0. ] #for all 0 < x < 1] + +# Space and time domains +domains = [t ∈ (0.0,1.0), + x ∈ (0.0,1.0)] + +@named pde_system = PDESystem(eq,bcs,domains,[t,x],[u]) + +@test pde_system.ps == SciMLBase.NullParameters() +@test parameter_symbols(pde_system) == [] + +@parameters t x +@constants h = 1 +@variables u(..) +Dt = Differential(t) +Dxx = Differential(x)^2 +eq = Dt(u(t, x)) ~ h * Dxx(u(t, x)) +bcs = [u(0, x) ~ -h * x * (x - 1) * sin(x), + u(t, 0) ~ 0, u(t, 1) ~ 0] + +domains = [t ∈ (0.0, 1.0), + x ∈ (0.0, 1.0)] + +analytic = [u(t, x) ~ -h * x * (x - 1) * sin(x) * exp(-2 * h * t)] +analytic_function = (ps, t, x) -> -ps[1] * x * (x - 1) * sin(x) * exp(-2 * ps[1] * t) + +@named pdesys = PDESystem(eq, bcs, domains, [t, x], [u], [h => 1], analytic = analytic) + +@test isequal(pdesys.ps, [h => 1]) +@test isequal(parameter_symbols(pdesys), [h]) +@test isequal(parameters(pdesys), [h])