diff --git a/test/distributed.jl b/test/distributed.jl index 023f17cf4e..fb89dfda1e 100644 --- a/test/distributed.jl +++ b/test/distributed.jl @@ -33,4 +33,4 @@ end solve_lorenz(ode_prob) future = @spawn solve_lorenz(ode_prob) -@test_broken fetch(future) +fetch(future) diff --git a/test/inversemodel.jl b/test/inversemodel.jl index 4844848b9d..0d18e899aa 100644 --- a/test/inversemodel.jl +++ b/test/inversemodel.jl @@ -2,6 +2,7 @@ using ModelingToolkit using ModelingToolkitStandardLibrary using ModelingToolkitStandardLibrary.Blocks using OrdinaryDiffEq +using SymbolicIndexingInterface using Test using ControlSystemsMTK: tf, ss, get_named_sensitivity, get_named_comp_sensitivity @@ -144,7 +145,7 @@ sol = solve(prob, Rodas5P()) # plot(sol, idxs=[model.tank.xc, model.tank.xT, model.controller.ctr_output.u], layout=3, sp=[1 2 3]) # hline!([prob[cm.ref.k]], label="ref", sp=1) -@test sol(tspan[2], idxs = cm.tank.xc)≈prob[cm.ref.k] atol=1e-2 # Test that the inverse model led to the correct reference +@test sol(tspan[2], idxs = cm.tank.xc)≈ getp(prob, cm.ref.k)(prob) atol=1e-2 # Test that the inverse model led to the correct reference Sf, simplified_sys = Blocks.get_sensitivity_function(model, :y) # This should work without providing an operating opint containing a dummy derivative x, p = ModelingToolkit.get_u0_p(simplified_sys, op)