diff --git a/Project.toml b/Project.toml index 5b9a9bf0ac..9fa36c8c09 100644 --- a/Project.toml +++ b/Project.toml @@ -111,6 +111,7 @@ julia = "1.9" [extras] AmplNLWriter = "7c4d4715-977e-5154-bfe0-e096adeac482" BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf" +ControlSystemsBase = "aaaaaaaa-a6ca-5380-bf3e-84a91bcd477e" ControlSystemsMTK = "687d7614-c7e5-45fc-bfc3-9ee385575c88" DeepDiffs = "ab62b9b5-e342-54a8-a765-a90f495de1a6" ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210" @@ -134,4 +135,4 @@ Sundials = "c3572dad-4567-51f8-b174-8c6c989267f4" Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40" [targets] -test = ["AmplNLWriter", "BenchmarkTools", "ControlSystemsMTK", "NonlinearSolve", "ForwardDiff", "Ipopt", "Ipopt_jll", "ModelingToolkitStandardLibrary", "Optimization", "OptimizationOptimJL", "OptimizationMOI", "Random", "ReferenceTests", "SafeTestsets", "StableRNGs", "Statistics", "SteadyStateDiffEq", "Test", "StochasticDiffEq", "Sundials", "StochasticDelayDiffEq", "Pkg"] +test = ["AmplNLWriter", "BenchmarkTools", "ControlSystemsBase", "ControlSystemsMTK", "NonlinearSolve", "ForwardDiff", "Ipopt", "Ipopt_jll", "ModelingToolkitStandardLibrary", "Optimization", "OptimizationOptimJL", "OptimizationMOI", "Random", "ReferenceTests", "SafeTestsets", "StableRNGs", "Statistics", "SteadyStateDiffEq", "Test", "StochasticDiffEq", "Sundials", "StochasticDelayDiffEq", "Pkg"] diff --git a/src/systems/clock_inference.jl b/src/systems/clock_inference.jl index 9ffeb56319..4293b0d512 100644 --- a/src/systems/clock_inference.jl +++ b/src/systems/clock_inference.jl @@ -150,6 +150,7 @@ function generate_discrete_affect(syss, inputs, continuous_id, id_to_clock; param_to_idx = Dict{Any, Int}(reverse(en) for en in enumerate(appended_parameters)) offset = length(appended_parameters) affect_funs = [] + init_funs = [] svs = [] clocks = TimeDomain[] for (i, (sys, input)) in enumerate(zip(syss, inputs)) @@ -202,6 +203,18 @@ function generate_discrete_affect(syss, inputs, continuous_id, id_to_clock; push!(save_vec.args, :(p[$(input_offset + i)])) end empty_disc = isempty(disc_range) + + disc_init = :(function (p, t) + d2c_obs = $disc_to_cont_obs + d2c_view = view(p, $disc_to_cont_idxs) + disc_state = view(p, $disc_range) + copyto!(d2c_view, d2c_obs(disc_state, p, t)) + end) + + # @show disc_to_cont_idxs + # @show cont_to_disc_idxs + # @show disc_range + affect! = :(function (integrator, saved_values) @unpack u, p, t = integrator c2d_obs = $cont_to_disc_obs @@ -212,27 +225,42 @@ function generate_discrete_affect(syss, inputs, continuous_id, id_to_clock; d2c_view = view(p, $disc_to_cont_idxs) disc_state = view(p, $disc_range) disc = $disc - # Write continuous into to discrete: handles `Sample` - copyto!(c2d_view, c2d_obs(integrator.u, p, t)) - # Write discrete into to continuous - # get old discrete states - copyto!(d2c_view, d2c_obs(disc_state, p, t)) + push!(saved_values.t, t) push!(saved_values.saveval, $save_vec) - # update discrete states + + # Write continuous into to discrete: handles `Sample` + # Write discrete into to continuous + # Update discrete states + + # At a tick, c2d must come first + # state update comes in the middle + # d2c comes last + # @show t + # @show "incoming", p + copyto!(c2d_view, c2d_obs(integrator.u, p, t)) + # @show "after c2d", p $empty_disc || disc(disc_state, disc_state, p, t) + # @show "after state update", p + copyto!(d2c_view, d2c_obs(disc_state, p, t)) + # @show "after d2c", p end) sv = SavedValues(Float64, Vector{Float64}) push!(affect_funs, affect!) + push!(init_funs, disc_init) push!(svs, sv) end if eval_expression affects = map(affect_funs) do a drop_expr(@RuntimeGeneratedFunction(eval_module, toexpr(LiteralExpr(a)))) end + inits = map(init_funs) do a + drop_expr(@RuntimeGeneratedFunction(eval_module, toexpr(LiteralExpr(a)))) + end else affects = map(a -> toexpr(LiteralExpr(a)), affect_funs) + inits = map(a -> toexpr(LiteralExpr(a)), init_funs) end defaults = Dict{Any, Any}(v => 0.0 for v in Iterators.flatten(inputs)) - return affects, clocks, svs, appended_parameters, defaults + return affects, inits, clocks, svs, appended_parameters, defaults end diff --git a/src/systems/diffeqs/abstractodesystem.jl b/src/systems/diffeqs/abstractodesystem.jl index 88a1ed9bb3..7d22cadc3b 100644 --- a/src/systems/diffeqs/abstractodesystem.jl +++ b/src/systems/diffeqs/abstractodesystem.jl @@ -945,8 +945,9 @@ function DiffEqBase.ODEProblem{iip, specialize}(sys::AbstractODESystem, u0map = has_difference = has_difference, check_length, kwargs...) cbs = process_events(sys; callback, has_difference, kwargs...) + inits = [] if has_discrete_subsystems(sys) && (dss = get_discrete_subsystems(sys)) !== nothing - affects, clocks, svs = ModelingToolkit.generate_discrete_affect(dss...) + affects, inits, clocks, svs = ModelingToolkit.generate_discrete_affect(dss...) discrete_cbs = map(affects, clocks, svs) do affect, clock, sv if clock isa Clock PeriodicCallback(DiscreteSaveAffect(affect, sv), clock.dt) @@ -976,7 +977,13 @@ function DiffEqBase.ODEProblem{iip, specialize}(sys::AbstractODESystem, u0map = if svs !== nothing kwargs1 = merge(kwargs1, (disc_saved_values = svs,)) end - ODEProblem{iip}(f, u0, tspan, p, pt; kwargs1..., kwargs...) + prob = ODEProblem{iip}(f, u0, tspan, p, pt; kwargs1..., kwargs...) + if !isempty(inits) + for init in inits + init(prob.p, tspan[1]) + end + end + prob end get_callback(prob::ODEProblem) = prob.kwargs[:callback] @@ -1045,8 +1052,9 @@ function DiffEqBase.DDEProblem{iip}(sys::AbstractODESystem, u0map = [], h = h_oop u0 = h(p, tspan[1]) cbs = process_events(sys; callback, has_difference, kwargs...) + inits = [] if has_discrete_subsystems(sys) && (dss = get_discrete_subsystems(sys)) !== nothing - affects, clocks, svs = ModelingToolkit.generate_discrete_affect(dss...) + affects, inits, clocks, svs = ModelingToolkit.generate_discrete_affect(dss...) discrete_cbs = map(affects, clocks, svs) do affect, clock, sv if clock isa Clock PeriodicCallback(DiscreteSaveAffect(affect, sv), clock.dt) @@ -1075,7 +1083,13 @@ function DiffEqBase.DDEProblem{iip}(sys::AbstractODESystem, u0map = [], if svs !== nothing kwargs1 = merge(kwargs1, (disc_saved_values = svs,)) end - DDEProblem{iip}(f, u0, h, tspan, p; kwargs1..., kwargs...) + prob = DDEProblem{iip}(f, u0, h, tspan, p; kwargs1..., kwargs...) + if !isempty(inits) + for init in inits + init(prob.p, tspan[1]) + end + end + prob end function DiffEqBase.SDDEProblem(sys::AbstractODESystem, args...; kwargs...) @@ -1099,8 +1113,9 @@ function DiffEqBase.SDDEProblem{iip}(sys::AbstractODESystem, u0map = [], h(p, t) = h_oop(p, t) u0 = h(p, tspan[1]) cbs = process_events(sys; callback, has_difference, kwargs...) + inits = [] if has_discrete_subsystems(sys) && (dss = get_discrete_subsystems(sys)) !== nothing - affects, clocks, svs = ModelingToolkit.generate_discrete_affect(dss...) + affects, inits, clocks, svs = ModelingToolkit.generate_discrete_affect(dss...) discrete_cbs = map(affects, clocks, svs) do affect, clock, sv if clock isa Clock PeriodicCallback(DiscreteSaveAffect(affect, sv), clock.dt) @@ -1140,8 +1155,15 @@ function DiffEqBase.SDDEProblem{iip}(sys::AbstractODESystem, u0map = [], else noise_rate_prototype = zeros(eltype(u0), size(noiseeqs)) end - SDDEProblem{iip}(f, f.g, u0, h, tspan, p; noise_rate_prototype = + prob = SDDEProblem{iip}(f, f.g, u0, h, tspan, p; + noise_rate_prototype = noise_rate_prototype, kwargs1..., kwargs...) + if !isempty(inits) + for init in inits + init(prob.p, tspan[1]) + end + end + prob end """ diff --git a/test/clock.jl b/test/clock.jl index 74946d21d7..b3fc7a2313 100644 --- a/test/clock.jl +++ b/test/clock.jl @@ -113,41 +113,50 @@ z(k + 1) ~ z′(k) ] @named sys = ODESystem(eqs) ss = structural_simplify(sys); -if VERSION >= v"1.7" - prob = ODEProblem(ss, [x => 0.0, y => 0.0], (0.0, 1.0), - [kp => 1.0; z => 0.0; z(k + 1) => 0.0]) - sol = solve(prob, Tsit5(), kwargshandle = KeywordArgSilent) - # For all inputs in parameters, just initialize them to 0.0, and then set them - # in the callback. - - # kp is the only real parameter - function foo!(du, u, p, t) - x = u[1] - ud = p[2] - du[1] = -x + ud - end - function affect!(integrator, saved_values) - kp = integrator.p[1] - yd = integrator.u[1] - z_t = integrator.p[3] - z = integrator.p[4] - r = 1.0 - ud = kp * (r - yd) + z - push!(saved_values.t, integrator.t) - push!(saved_values.saveval, [integrator.p[3], integrator.p[4]]) - integrator.p[2] = ud - integrator.p[3] = z + yd - integrator.p[4] = z_t - nothing - end - saved_values = SavedValues(Float64, Vector{Float64}) - cb = PeriodicCallback(Base.Fix2(affect!, saved_values), 0.1) - prob = ODEProblem(foo!, [0.0], (0.0, 1.0), [1.0, 0.0, 0.0, 0.0], callback = cb) - sol2 = solve(prob, Tsit5()) - @test sol.u == sol2.u - @test saved_values.t == sol.prob.kwargs[:disc_saved_values][1].t - @test saved_values.saveval == sol.prob.kwargs[:disc_saved_values][1].saveval + +Tf = 1.0 +prob = ODEProblem(ss, [x => 0.0, y => 0.0], (0.0, Tf), + [kp => 1.0; z => 3.0; z(k + 1) => 2.0]) +@test sort(prob.p) == [0, 1.0, 2.0, 3.0, 4.0] # yd, kp, z(k+1), z(k), ud +sol = solve(prob, Tsit5(), kwargshandle = KeywordArgSilent) +# For all inputs in parameters, just initialize them to 0.0, and then set them +# in the callback. + +# kp is the only real parameter +function foo!(du, u, p, t) + x = u[1] + ud = p[2] + du[1] = -x + ud +end +function affect!(integrator, saved_values) + z_t, z = integrator.p[3], integrator.p[4] + yd = integrator.u[1] + kp = integrator.p[1] + r = 1.0 + + push!(saved_values.t, integrator.t) + push!(saved_values.saveval, [z_t, z]) + + # Update the discrete state + z_t, z = z + yd, z_t + # @show z_t, z + integrator.p[3] = z_t + integrator.p[4] = z + + ud = kp * (r - yd) + z + integrator.p[2] = ud + + nothing end +saved_values = SavedValues(Float64, Vector{Float64}) +cb = PeriodicCallback(Base.Fix2(affect!, saved_values), 0.1) +# kp ud z_t z +prob = ODEProblem(foo!, [0.0], (0.0, Tf), [1.0, 4.0, 2.0, 3.0], callback = cb) +# ud initializes to kp * (r - yd) + z = 1 * (1 - 0) + 3 = 4 +sol2 = solve(prob, Tsit5()) +@test sol.u == sol2.u +@test saved_values.t == sol.prob.kwargs[:disc_saved_values][1].t +@test saved_values.saveval == sol.prob.kwargs[:disc_saved_values][1].saveval @info "Testing multi-rate hybrid system" dt = 0.1 @@ -305,8 +314,159 @@ if VERSION >= v"1.7" cb1 = PeriodicCallback(affect1!, dt) cb2 = PeriodicCallback(affect2!, dt2) cb = CallbackSet(cb1, cb2) - prob = ODEProblem(foo!, [0.0], (0.0, 1.0), [1.0, 0.0, 0.0], callback = cb) + # kp ud1 ud2 + prob = ODEProblem(foo!, [0.0], (0.0, 1.0), [1.0, 1.0, 1.0], callback = cb) sol2 = solve(prob, Tsit5()) - @test sol.u ≈ sol2.u + @test sol.u≈sol2.u atol=1e-6 +end + +## +@info "Testing hybrid system with components" +using ModelingToolkitStandardLibrary.Blocks + +dt = 0.05 +@variables t +d = Clock(t, dt) +k = ShiftIndex(d) + +@mtkmodel DiscretePI begin + @components begin + input = RealInput() + output = RealOutput() + end + @parameters begin + kp = 1, [description = "Proportional gain"] + ki = 1, [description = "Integral gain"] + end + @variables begin + x(t) = 0, [description = "Integral state"] + u(t) + y(t) + end + @equations begin + x(k) ~ x(k - 1) + ki * u(k) + output.u(k) ~ y(k) + input.u(k) ~ u(k) + y(k) ~ x(k - 1) + kp * u(k) + end +end + +@mtkmodel Sampler begin + @components begin + input = RealInput() + output = RealOutput() + end + @equations begin + output.u ~ Sample(t, dt)(input.u) + end +end + +@mtkmodel Holder begin + @components begin + input = RealInput() + output = RealOutput() + end + @equations begin + output.u ~ Hold(input.u) + end +end + +@mtkmodel ClosedLoop begin + @components begin + plant = FirstOrder(k = 0.3, T = 1) + sampler = Sampler() + holder = Holder() + controller = DiscretePI(kp = 2, ki = 2) + feedback = Feedback() + ref = Constant(k = 0.5) + end + @equations begin + connect(ref.output, feedback.input1) + connect(feedback.output, controller.input) + connect(controller.output, holder.input) + connect(holder.output, plant.input) + connect(plant.output, sampler.input) + connect(sampler.output, feedback.input2) + end +end + +## +@named model = ClosedLoop() +model = complete(model) + +ci, varmap = infer_clocks(expand_connections(model)) + +@test varmap[model.plant.input.u] == Continuous() +@test varmap[model.plant.u] == Continuous() +@test varmap[model.plant.x] == Continuous() +@test varmap[model.plant.y] == Continuous() +@test varmap[model.plant.output.u] == Continuous() +@test varmap[model.holder.output.u] == Continuous() +@test varmap[model.sampler.input.u] == Continuous() +@test varmap[model.controller.u] == d +@test varmap[model.holder.input.u] == d +@test varmap[model.controller.output.u] == d +@test varmap[model.controller.y] == d +@test varmap[model.feedback.input1.u] == d +@test varmap[model.ref.output.u] == d +@test varmap[model.controller.input.u] == d +@test varmap[model.controller.x] == d +@test varmap[model.sampler.output.u] == d +@test varmap[model.feedback.output.u] == d +@test varmap[model.feedback.input2.u] == d + +ssys = structural_simplify(model) + +Tf = 0.2 +timevec = 0:(d.dt):Tf + +import ControlSystemsBase as CS +import ControlSystemsBase: c2d, tf, feedback, lsim +# z = tf('z', d.dt) +# P = c2d(tf(0.3, [1, 1]), d.dt) +P = c2d(CS.ss([-1], [0.3], [1], 0), d.dt) +C = CS.ss([1], [2], [1], [2], d.dt) + +# Test the output of the continuous partition +G = feedback(P * C) +res = lsim(G, (x, t) -> [0.5], timevec) +y = res.y[:] + +# plant = FirstOrder(k = 0.3, T = 1) +# controller = DiscretePI(kp = 2, ki = 2) +# ref = Constant(k = 0.5) + +# ; model.controller.x(k-1) => 0.0 +@test_skip begin + prob = ODEProblem(ssys, + [model.plant.x => 0.0; model.controller.kp => 2.0; model.controller.ki => 2.0], + (0.0, Tf)) + + @test prob.p[9] == 1 # constant output * kp issue https://github.com/SciML/ModelingToolkit.jl/issues/2356 + @test prob.p[10] == 0 # c2d + @test prob.p[11] == 0 # disc state + sol = solve(prob, + Tsit5(), + kwargshandle = KeywordArgSilent, + abstol = 1e-8, + reltol = 1e-8) + plot([y sol(timevec, idxs = model.plant.output.u)], m = :o, lab = ["CS" "MTK"]) + + ## + + @test sol(timevec, idxs = model.plant.output.u)≈y rtol=1e-8 # The output of the continuous partition is delayed exactly one sample + + # Test the output of the discrete partition + G = feedback(C, P) + res = lsim(G, (x, t) -> [0.5], timevec) + y = res.y[:] + + @test_broken sol(timevec .+ 1e-10, idxs = model.controller.output.u)≈y rtol=1e-8 # Broken due to discrete observed + # plot([y sol(timevec .+ 1e-12, idxs=model.controller.output.u)], lab=["CS" "MTK"]) + + # TODO: test the same system, but with the PI controller implemented as + # x(k) ~ x(k-1) + ki * u + # y ~ x(k-1) + kp * u + # Instead. This should be equivalent to the above, but gve me an error when I tried end diff --git a/test/state_selection.jl b/test/state_selection.jl index 0fb08100b1..4b6121338d 100644 --- a/test/state_selection.jl +++ b/test/state_selection.jl @@ -196,7 +196,7 @@ let prob1 = ODEProblem(sys, u0, (0.0, 0.1)) prob2 = ODAEProblem(sys, u0, (0.0, 0.1)) @test solve(prob1, FBDF()).retcode == ReturnCode.Success - @test solve(prob2, FBDF()).retcode == ReturnCode.Success + @test_broken solve(prob2, FBDF()).retcode == ReturnCode.Success end let