diff --git a/src/systems/diffeqs/sdesystem.jl b/src/systems/diffeqs/sdesystem.jl index b1f81240f3..439e525670 100644 --- a/src/systems/diffeqs/sdesystem.jl +++ b/src/systems/diffeqs/sdesystem.jl @@ -245,11 +245,30 @@ function Base.:(==)(sys1::SDESystem, sys2::SDESystem) all(s1 == s2 for (s1, s2) in zip(get_systems(sys1), get_systems(sys2))) end -function __num_isdiag(mat) - for i in axes(mat, 1), j in axes(mat, 2) - i == j || isequal(mat[i, j], 0) || return false +function __num_isdiag_noise(mat) + for i in axes(mat, 1) + nnz = 0 + for j in axes(mat, 2) + if !isequal(mat[i, j], 0) + nnz += 1 + end + end + if nnz > 1 + return (false) + end + end + true +end +function __get_num_diag_noise(mat) + map(axes(mat, 1)) do i + for j in axes(mat, 2) + mij = mat[i, j] + if !isequal(mij, 0) + return mij + end + end + 0 end - return true end function generate_diffusion_function(sys::SDESystem, dvs = unknowns(sys), @@ -258,9 +277,6 @@ function generate_diffusion_function(sys::SDESystem, dvs = unknowns(sys), if isdde eqs = delay_to_function(sys, eqs) end - if eqs isa AbstractMatrix && __num_isdiag(eqs) - eqs = diag(eqs) - end u = map(x -> time_varying_as_func(value(x), sys), dvs) p = if has_index_cache(sys) && get_index_cache(sys) !== nothing reorder_parameters(get_index_cache(sys), ps) diff --git a/src/systems/systems.jl b/src/systems/systems.jl index a166ff8d8a..569ef05b91 100644 --- a/src/systems/systems.jl +++ b/src/systems/systems.jl @@ -133,10 +133,11 @@ function __structural_simplify(sys::AbstractSystem, io = nothing; simplify = fal # we get a Nx1 matrix of noise equations, which is a special case known as scalar noise noise_eqs = sorted_g_rows[:, 1] is_scalar_noise = true - elseif isdiag(sorted_g_rows) - # If the noise matrix is diagonal, then the solver just takes a vector column of equations - # and it interprets that as diagonal noise. - noise_eqs = diag(sorted_g_rows) + elseif __num_isdiag_noise(sorted_g_rows) + # If each column of the noise matrix has either 0 or 1 non-zero entry, then this is "diagonal noise". + # In this case, the solver just takes a vector column of equations and it interprets that to + # mean that each noise process is independent + noise_eqs = __get_num_diag_noise(sorted_g_rows) is_scalar_noise = false else noise_eqs = sorted_g_rows diff --git a/test/sdesystem.jl b/test/sdesystem.jl index d71848bf4b..6e83d40d5f 100644 --- a/test/sdesystem.jl +++ b/test/sdesystem.jl @@ -725,12 +725,12 @@ end @testset "Non-diagonal noise check" begin @parameters σ ρ β - @variables x(t) y(t) z(t) - @brownian a b c - eqs = [D(x) ~ σ * (y - x) + 0.1a * x + 0.1b * y, - D(y) ~ x * (ρ - z) - y + 0.1b * y, - D(z) ~ x * y - β * z + 0.1c * z] - @mtkbuild de = System(eqs, t) + @variables x(tt) y(tt) z(tt) + @brownian a b c d e f + eqs = [D(x) ~ σ * (y - x) + 0.1a * x + d, + D(y) ~ x * (ρ - z) - y + 0.1b * y + e, + D(z) ~ x * y - β * z + 0.1c * z + f] + @mtkbuild de = System(eqs, tt) u0map = [ x => 1.0, @@ -746,5 +746,33 @@ end prob = SDEProblem(de, u0map, (0.0, 100.0), parammap) # SOSRI only works for diagonal and scalar noise + @test_throws ErrorException solve(prob, SOSRI()).retcode==ReturnCode.Success + # ImplicitEM does work for non-diagonal noise @test solve(prob, ImplicitEM()).retcode == ReturnCode.Success + @test size(ModelingToolkit.get_noiseeqs(de)) == (3, 6) +end + +@testset "Diagonal noise, less brownians than equations" begin + @parameters σ ρ β + @variables x(tt) y(tt) z(tt) + @brownian a b + eqs = [D(x) ~ σ * (y - x) + 0.1a * x, # One brownian + D(y) ~ x * (ρ - z) - y + 0.1b * y, # Another brownian + D(z) ~ x * y - β * z] # no brownians -- still diagonal + @mtkbuild de = System(eqs, tt) + + u0map = [ + x => 1.0, + y => 0.0, + z => 0.0 + ] + + parammap = [ + σ => 10.0, + β => 26.0, + ρ => 2.33 + ] + + prob = SDEProblem(de, u0map, (0.0, 100.0), parammap) + @test solve(prob, SOSRI()).retcode == ReturnCode.Success end