diff --git a/docs/pages.jl b/docs/pages.jl index be8d610bc..19ac930b7 100644 --- a/docs/pages.jl +++ b/docs/pages.jl @@ -11,7 +11,8 @@ pages = ["index.md", "basics/FAQ.md"], "Solver Summaries and Recommendations" => Any["solvers/NonlinearSystemSolvers.md", "solvers/BracketingSolvers.md", - "solvers/SteadyStateSolvers.md"], + "solvers/SteadyStateSolvers.md", + "solvers/NonlinearLeastSquaresSolvers.md"], "Detailed Solver APIs" => Any["api/nonlinearsolve.md", "api/simplenonlinearsolve.md", "api/minpack.md", diff --git a/docs/src/api/nonlinearsolve.md b/docs/src/api/nonlinearsolve.md index ff61c4813..50ee2bef0 100644 --- a/docs/src/api/nonlinearsolve.md +++ b/docs/src/api/nonlinearsolve.md @@ -7,6 +7,8 @@ These are the native solvers of NonlinearSolve.jl. ```@docs NewtonRaphson TrustRegion +LevenbergMarquardt +GaussNewton ``` ## Radius Update Schemes for Trust Region (RadiusUpdateSchemes) diff --git a/docs/src/solvers/NonlinearLeastSquaresSolvers.md b/docs/src/solvers/NonlinearLeastSquaresSolvers.md new file mode 100644 index 000000000..af7e66588 --- /dev/null +++ b/docs/src/solvers/NonlinearLeastSquaresSolvers.md @@ -0,0 +1,28 @@ +# Nonlinear Least Squares Solvers + +`solve(prob::NonlinearLeastSquaresProblem, alg; kwargs...)` + +Solves the nonlinear least squares problem defined by `prob` using the algorithm +`alg`. If no algorithm is given, a default algorithm will be chosen. + +## Recommended Methods + +`LevenbergMarquardt` is a good choice for most problems. + +## Full List of Methods + +- `LevenbergMarquardt()`: An advanced Levenberg-Marquardt implementation with the + improvements suggested in the [paper](https://arxiv.org/abs/1201.5885) "Improvements to + the Levenberg-Marquardt algorithm for nonlinear least-squares minimization". Designed for + large-scale and numerically-difficult nonlinear systems. +- `GaussNewton()`: An advanced GaussNewton implementation with support for efficient + handling of sparse matrices via colored automatic differentiation and preconditioned + linear solvers. Designed for large-scale and numerically-difficult nonlinear least squares + problems. + +## Example usage + +```julia +using NonlinearSolve +sol = solve(prob, LevenbergMarquardt()) +``` diff --git a/docs/src/solvers/NonlinearSystemSolvers.md b/docs/src/solvers/NonlinearSystemSolvers.md index b1781a435..9ad112192 100644 --- a/docs/src/solvers/NonlinearSystemSolvers.md +++ b/docs/src/solvers/NonlinearSystemSolvers.md @@ -42,6 +42,10 @@ features, but have a bit of overhead on very small problems. methods for high performance on large and sparse systems. - `TrustRegion()`: A Newton Trust Region dogleg method with swappable nonlinear solvers and autodiff methods for high performance on large and sparse systems. + - `LevenbergMarquardt()`: An advanced Levenberg-Marquardt implementation with the + improvements suggested in the [paper](https://arxiv.org/abs/1201.5885) "Improvements to + the Levenberg-Marquardt algorithm for nonlinear least-squares minimization". Designed for + large-scale and numerically-difficult nonlinear systems. ### SimpleNonlinearSolve.jl diff --git a/src/NonlinearSolve.jl b/src/NonlinearSolve.jl index ebf441a71..7566400c1 100644 --- a/src/NonlinearSolve.jl +++ b/src/NonlinearSolve.jl @@ -64,6 +64,7 @@ include("linesearch.jl") include("raphson.jl") include("trustRegion.jl") include("levenberg.jl") +include("gaussnewton.jl") include("jacobian.jl") include("ad.jl") @@ -93,7 +94,7 @@ end export RadiusUpdateSchemes -export NewtonRaphson, TrustRegion, LevenbergMarquardt +export NewtonRaphson, TrustRegion, LevenbergMarquardt, GaussNewton export LineSearch diff --git a/src/gaussnewton.jl b/src/gaussnewton.jl new file mode 100644 index 000000000..5c9557516 --- /dev/null +++ b/src/gaussnewton.jl @@ -0,0 +1,165 @@ +""" + GaussNewton(; concrete_jac = nothing, linsolve = nothing, precs = DEFAULT_PRECS, + adkwargs...) + +An advanced GaussNewton implementation with support for efficient handling of sparse +matrices via colored automatic differentiation and preconditioned linear solvers. Designed +for large-scale and numerically-difficult nonlinear least squares problems. + +!!! note + In most practical situations, users should prefer using `LevenbergMarquardt` instead! It + is a more general extension of `Gauss-Newton` Method. + +### Keyword Arguments + + - `autodiff`: determines the backend used for the Jacobian. Note that this argument is + ignored if an analytical Jacobian is passed, as that will be used instead. Defaults to + `AutoForwardDiff()`. Valid choices are types from ADTypes.jl. + - `concrete_jac`: whether to build a concrete Jacobian. If a Krylov-subspace method is used, + then the Jacobian will not be constructed and instead direct Jacobian-vector products + `J*v` are computed using forward-mode automatic differentiation or finite differencing + tricks (without ever constructing the Jacobian). However, if the Jacobian is still needed, + for example for a preconditioner, `concrete_jac = true` can be passed in order to force + the construction of the Jacobian. + - `linsolve`: the [LinearSolve.jl](https://github.com/SciML/LinearSolve.jl) used for the + linear solves within the Newton method. Defaults to `nothing`, which means it uses the + LinearSolve.jl default algorithm choice. For more information on available algorithm + choices, see the [LinearSolve.jl documentation](https://docs.sciml.ai/LinearSolve/stable/). + - `precs`: the choice of preconditioners for the linear solver. Defaults to using no + preconditioners. For more information on specifying preconditioners for LinearSolve + algorithms, consult the + [LinearSolve.jl documentation](https://docs.sciml.ai/LinearSolve/stable/). + +!!! warning + + Jacobian-Free version of `GaussNewton` doesn't work yet, and it forces jacobian + construction. This will be fixed in the near future. +""" +@concrete struct GaussNewton{CJ, AD} <: AbstractNewtonAlgorithm{CJ, AD} + ad::AD + linsolve + precs +end + +function GaussNewton(; concrete_jac = nothing, linsolve = NormalCholeskyFactorization(), + precs = DEFAULT_PRECS, adkwargs...) + ad = default_adargs_to_adtype(; adkwargs...) + return GaussNewton{_unwrap_val(concrete_jac)}(ad, linsolve, precs) +end + +@concrete mutable struct GaussNewtonCache{iip} <: AbstractNonlinearSolveCache{iip} + f + alg + u + fu1 + fu2 + fu_new + du + p + uf + linsolve + J + JᵀJ + Jᵀf + jac_cache + force_stop + maxiters::Int + internalnorm + retcode::ReturnCode.T + abstol + prob + stats::NLStats +end + +function SciMLBase.__init(prob::NonlinearLeastSquaresProblem{uType, iip}, alg::GaussNewton, + args...; alias_u0 = false, maxiters = 1000, abstol = 1e-6, internalnorm = DEFAULT_NORM, + kwargs...) where {uType, iip} + @unpack f, u0, p = prob + u = alias_u0 ? u0 : deepcopy(u0) + if iip + fu1 = f.resid_prototype === nothing ? zero(u) : f.resid_prototype + f(fu1, u, p) + else + fu1 = f(u, p) + end + uf, linsolve, J, fu2, jac_cache, du = jacobian_caches(alg, f, u, p, Val(iip)) + + JᵀJ = J isa Number ? zero(J) : similar(J, size(J, 2), size(J, 2)) + Jᵀf = zero(u) + + return GaussNewtonCache{iip}(f, alg, u, fu1, fu2, zero(fu1), du, p, uf, linsolve, J, + JᵀJ, Jᵀf, jac_cache, false, maxiters, internalnorm, ReturnCode.Default, abstol, + prob, NLStats(1, 0, 0, 0, 0)) +end + +function perform_step!(cache::GaussNewtonCache{true}) + @unpack u, fu1, f, p, alg, J, JᵀJ, Jᵀf, linsolve, du = cache + jacobian!!(J, cache) + mul!(JᵀJ, J', J) + mul!(Jᵀf, J', fu1) + + # u = u - J \ fu + linres = dolinsolve(alg.precs, linsolve; A = JᵀJ, b = _vec(Jᵀf), linu = _vec(du), + p, reltol = cache.abstol) + cache.linsolve = linres.cache + @. u = u - du + f(cache.fu_new, u, p) + + (cache.internalnorm(cache.fu_new .- cache.fu1) < cache.abstol || + cache.internalnorm(cache.fu_new) < cache.abstol) && + (cache.force_stop = true) + cache.fu1 .= cache.fu_new + cache.stats.nf += 1 + cache.stats.njacs += 1 + cache.stats.nsolve += 1 + cache.stats.nfactors += 1 + return nothing +end + +function perform_step!(cache::GaussNewtonCache{false}) + @unpack u, fu1, f, p, alg, linsolve = cache + + cache.J = jacobian!!(cache.J, cache) + cache.JᵀJ = cache.J' * cache.J + cache.Jᵀf = cache.J' * fu1 + # u = u - J \ fu + if linsolve === nothing + cache.du = fu1 / cache.J + else + linres = dolinsolve(alg.precs, linsolve; A = cache.JᵀJ, b = _vec(cache.Jᵀf), + linu = _vec(cache.du), p, reltol = cache.abstol) + cache.linsolve = linres.cache + end + cache.u = @. u - cache.du # `u` might not support mutation + cache.fu_new = f(cache.u, p) + + (cache.internalnorm(cache.fu_new .- cache.fu1) < cache.abstol || + cache.internalnorm(cache.fu_new) < cache.abstol) && + (cache.force_stop = true) + cache.fu1 = cache.fu_new + cache.stats.nf += 1 + cache.stats.njacs += 1 + cache.stats.nsolve += 1 + cache.stats.nfactors += 1 + return nothing +end + +function SciMLBase.reinit!(cache::GaussNewtonCache{iip}, u0 = cache.u; p = cache.p, + abstol = cache.abstol, maxiters = cache.maxiters) where {iip} + cache.p = p + if iip + recursivecopy!(cache.u, u0) + cache.f(cache.fu1, cache.u, p) + else + # don't have alias_u0 but cache.u is never mutated for OOP problems so it doesn't matter + cache.u = u0 + cache.fu1 = cache.f(cache.u, p) + end + cache.abstol = abstol + cache.maxiters = maxiters + cache.stats.nf = 1 + cache.stats.nsteps = 1 + cache.force_stop = false + cache.retcode = ReturnCode.Default + return cache +end diff --git a/test/nonlinear_least_squares.jl b/test/nonlinear_least_squares.jl index aabd458b5..5ca621313 100644 --- a/test/nonlinear_least_squares.jl +++ b/test/nonlinear_least_squares.jl @@ -25,13 +25,13 @@ prob_oop = NonlinearLeastSquaresProblem{false}(loss_function, θ_init, x) prob_iip = NonlinearLeastSquaresProblem(NonlinearFunction(loss_function; resid_prototype = zero(y_target)), θ_init, x) -# sol = solve(prob_oop, GaussNewton(); maxiters = 1000, abstol = 1e-8) -# @test SciMLBase.successful_retcode(sol) -# @test norm(sol.resid) < 1e-6 +sol = solve(prob_oop, GaussNewton(); maxiters = 1000, abstol = 1e-8) +@test SciMLBase.successful_retcode(sol) +@test norm(sol.resid) < 1e-6 -# sol = solve(prob_iip, GaussNewton(); maxiters = 1000, abstol = 1e-8) -# @test SciMLBase.successful_retcode(sol) -# @test norm(sol.resid) < 1e-6 +sol = solve(prob_iip, GaussNewton(); maxiters = 1000, abstol = 1e-8) +@test SciMLBase.successful_retcode(sol) +@test norm(sol.resid) < 1e-6 sol = solve(prob_oop, LevenbergMarquardt(); maxiters = 1000, abstol = 1e-8) @test SciMLBase.successful_retcode(sol)