diff --git a/dev/.documenter-siteinfo.json b/dev/.documenter-siteinfo.json
index 024b966a..2c631588 100644
--- a/dev/.documenter-siteinfo.json
+++ b/dev/.documenter-siteinfo.json
@@ -1 +1 @@
-{"documenter":{"julia_version":"1.11.2","generation_timestamp":"2025-01-11T09:43:31","documenter_version":"1.8.0"}}
\ No newline at end of file
+{"documenter":{"julia_version":"1.11.2","generation_timestamp":"2025-01-13T13:56:40","documenter_version":"1.8.0"}}
\ No newline at end of file
diff --git a/dev/api/esn/index.html b/dev/api/esn/index.html
index c4e1a3f5..ecfa0052 100644
--- a/dev/api/esn/index.html
+++ b/dev/api/esn/index.html
@@ -13,7 +13,7 @@
0.987182 0.898593 0.295241 0.233098 0.789699 0.453692 0.759205
julia> esn = ESN(train_data, 10, 300; washout=10)
-ESN(10 => 300)source
To train an ESN model, you can use the train
function. It takes the ESN model, training data, and other optional parameters as input and returns a trained model. Here's the documentation for the train function:
train(esn::AbstractEchoStateNetwork, target_data, training_method = StandardRidge(0.0))
Trains an Echo State Network (ESN) using the provided target data and a specified training method.
Parameters
esn::AbstractEchoStateNetwork
: The ESN instance to be trained.target_data
: Supervised training data for the ESN.training_method
: The method for training the ESN (default: StandardRidge(0.0)
).Example
julia> train_data = rand(Float32, 10, 100) # 10 features, 100 time steps
+ESN(10 => 300)
source To train an ESN model, you can use the train
function. It takes the ESN model, training data, and other optional parameters as input and returns a trained model. Here's the documentation for the train function:
train(esn::AbstractEchoStateNetwork, target_data, training_method = StandardRidge(0.0))
Trains an Echo State Network (ESN) using the provided target data and a specified training method.
Parameters
esn::AbstractEchoStateNetwork
: The ESN instance to be trained.target_data
: Supervised training data for the ESN.training_method
: The method for training the ESN (default: StandardRidge(0.0)
).Example
julia> train_data = rand(Float32, 10, 100) # 10 features, 100 time steps
10×100 Matrix{Float32}:
0.11437 0.425367 0.585867 0.34078 … 0.0531493 0.761425 0.883164
0.301373 0.497806 0.279603 0.802417 0.49873 0.270156 0.333333
@@ -30,4 +30,4 @@
ESN(10 => 300)
julia> output_layer = train(esn, rand(Float32, 3, 90))
-OutputLayer successfully trained with output size: 3
source With these components and variations, you can configure and train ESN models for various time series and sequential data prediction tasks.
Theme
Automatic (OS) documenter-light documenter-dark catppuccin-latte catppuccin-frappe catppuccin-macchiato catppuccin-mocha
This document was generated with Documenter.jl version 1.8.0 on Saturday 11 January 2025 . Using Julia version 1.11.2.