-
Notifications
You must be signed in to change notification settings - Fork 0
/
calculo_Yb_tap.asv
51 lines (42 loc) · 2.68 KB
/
calculo_Yb_tap.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
% <CÁLCULO DO FLUXO DE POTÊNCIA - LOAD FLOW APPLYING NEWTON-RAPHSON METHOD V1.0.
% This is the main source of this software that calculates the power flow of a power network described using an excel input data file >
% Copyright (C) <2014> <Sebastián de Jesús Manrique Machado> <e-mail:[email protected]>
%
% This program is free software: you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
%Cálculo_Fluxo_de_Potência_ Newton Raphson
% Sebastián de Jesús Manrique Machado
% Estudante_Mestrado Em Engenharia Elétrica
% UEL - 2014.
%Função para achar Y barras.
function [Y_barras, b_shunt_m, a_tap_m] = calculo_Yb_tap(Ys_linha, b_shunt, num_barras, num_linhas, nodo_i, nodo_j, a_tap)
Y_barras = zeros(num_barras,num_barras); %O tamanho desta matriz é igual ao número de barras
b_shunt_m = zeros(num_barras,num_barras);
a_tap_m = zeros(num_barras,num_barras);
for i = 1 : num_linhas
a_tap_m( nodo_i(i), nodo_j(i) ) = 1/a_tap(i);
a_tap_m( nodo_j(i), nodo_i(i) ) = 1;
% Elementos fora da diagonal
Y_barras( nodo_i(i), nodo_j(i) ) = Y_barras( nodo_i(i), nodo_j(i) ) - ( a_tap_m(nodo_i(i), nodo_j(i)) * Ys_linha(i) ); %FALTA DESFASADOR
Y_barras( nodo_j(i), nodo_i(i) ) = Y_barras( nodo_i(i), nodo_j(i) );
b_shunt_m( nodo_i(i), nodo_j(i) ) = b_shunt_m( nodo_i(i), nodo_j(i) ) + imag(b_shunt(i)) + ( a_tap_m(nodo_i(i), nodo_j(i))*(a_tap_m(nodo_i(i), nodo_j(i))-1)*imag(Ys_linha(i)) );
b_shunt_m( nodo_j(i), nodo_i(i) ) = b_shunt_m( nodo_j(i), nodo_i(i) ) + imag(b_shunt(i)) + ( (1-a_tap_m(nodo_i(i), nodo_j(i)))*imag(Ys_linha(i)) );%conferir
if (i==9)
Y_barras(i,i) = Y_barras(i,i) + (1i*19/100);
b_shunt_m(i,i) = b_shunt_m(i,i)
end
% Elementos da diagonal
Y_barras( nodo_i(i), nodo_i(i) ) = Y_barras( nodo_i(i), nodo_i(i) ) + ((a_tap_m(nodo_i(i), nodo_j(i))^2)*Ys_linha(i)) + b_shunt(i); %(a_tap(i) * Ys_linha(i)) + 1i*b_shunt_m( nodo_i(i), nodo_j(i) );
Y_barras( nodo_j(i), nodo_j(i) ) = Y_barras( nodo_j(i), nodo_j(i) ) + Ys_linha(i) + b_shunt(i);%(a_tap(i) * Ys_linha(i)) + 1i*b_shunt_m( nodo_j(i), nodo_i(i) ); %Ys_linha(i)
end
end