CE2P (AAAI'2019)
@inproceedings{ruan2019devil,
title={Devil in the details: Towards accurate single and multiple human parsing},
author={Ruan, Tao and Liu, Ting and Huang, Zilong and Wei, Yunchao and Wei, Shikui and Zhao, Yao},
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
volume={33},
pages={4814--4821},
year={2019}
}
Backbone | Pretrain | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|
R-50-D8 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 75.69% | cfg | model | log |
R-50-D16 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 74.58% | cfg | model | log |
R-101-D8 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 77.77% | cfg | model | log |
R-101-D16 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 76.84% | cfg | model | log |
Backbone | Pretrain | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|
R-50-D8 | ImageNet-1k-224x224 | 473x473 | LR/POLICY/BS/EPOCH: 0.01/poly/32/150 | train/val | 52.42% | cfg | model | log |
R-50-D16 | ImageNet-1k-224x224 | 473x473 | LR/POLICY/BS/EPOCH: 0.01/poly/32/150 | train/val | 51.98% | cfg | model | log |
R-101-D8 | ImageNet-1k-224x224 | 473x473 | LR/POLICY/BS/EPOCH: 0.01/poly/32/150 | train/val | 54.79% | cfg | model | log |
R-101-D16 | ImageNet-1k-224x224 | 473x473 | LR/POLICY/BS/EPOCH: 0.01/poly/32/150 | train/val | 54.02% | cfg | model | log |
Backbone | Pretrain | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|
R-50-D8 | ImageNet-1k-224x224 | 473x473 | LR/POLICY/BS/EPOCH: 0.01/poly/32/150 | train/val | 61.15% | cfg | model | log |
R-50-D16 | ImageNet-1k-224x224 | 473x473 | LR/POLICY/BS/EPOCH: 0.01/poly/32/150 | train/val | 60.15% | cfg | model | log |
R-101-D8 | ImageNet-1k-224x224 | 473x473 | LR/POLICY/BS/EPOCH: 0.01/poly/32/150 | train/val | 63.83% | cfg | model | log |
R-101-D16 | ImageNet-1k-224x224 | 473x473 | LR/POLICY/BS/EPOCH: 0.01/poly/32/150 | train/val | 62.25% | cfg | model | log |
Backbone | Pretrain | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|
R-50-D8 | ImageNet-1k-224x224 | 473x473 | LR/POLICY/BS/EPOCH: 0.01/poly/32/150 | train/val | 78.02% | cfg | model | log |
R-50-D16 | ImageNet-1k-224x224 | 473x473 | LR/POLICY/BS/EPOCH: 0.01/poly/32/150 | train/val | 77.62% | cfg | model | log |
R-101-D8 | ImageNet-1k-224x224 | 473x473 | LR/POLICY/BS/EPOCH: 0.01/poly/32/150 | train/val | 78.57% | cfg | model | log |
R-101-D16 | ImageNet-1k-224x224 | 473x473 | LR/POLICY/BS/EPOCH: 0.01/poly/32/150 | train/val | 78.25% | cfg | model | log |
You can also download the model weights from following sources:
- BaiduNetdisk: https://pan.baidu.com/s/1gD-NJJWOtaHCtB0qHE79rA with access code s757