EncNet (CVPR'2018)
@InProceedings{Zhang_2018_CVPR,
author = {Zhang, Hang and Dana, Kristin and Shi, Jianping and Zhang, Zhongyue and Wang, Xiaogang and Tyagi, Ambrish and Agrawal, Amit},
title = {Context Encoding for Semantic Segmentation},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2018}
}
Backbone | Pretrain | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|
R-50-D8 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 75.53% | cfg | model | log |
R-50-D16 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 74.55% | cfg | model | log |
R-101-D8 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 77.61% | cfg | model | log |
R-101-D16 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 76.41% | cfg | model | log |
Backbone | Pretrain | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|
R-50-D8 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 40.60% | cfg | model | log |
R-50-D16 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 39.70% | cfg | model | log |
R-101-D8 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 43.43% | cfg | model | log |
R-101-D16 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 41.65% | cfg | model | log |
Backbone | Pretrain | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|
R-50-D8 | ImageNet-1k-224x224 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 77.98% | cfg | model | log |
R-50-D16 | ImageNet-1k-224x224 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 75.98% | cfg | model | log |
R-101-D8 | ImageNet-1k-224x224 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 78.70% | cfg | model | log |
R-101-D16 | ImageNet-1k-224x224 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/220 | train/val | 77.46% | cfg | model | log |
You can also download the model weights from following sources:
- BaiduNetdisk: https://pan.baidu.com/s/1gD-NJJWOtaHCtB0qHE79rA with access code s757