Skip to content

Latest commit

 

History

History

encnet

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

Introduction

Official Repo

Code Snippet

EncNet (CVPR'2018)
@InProceedings{Zhang_2018_CVPR,
    author = {Zhang, Hang and Dana, Kristin and Shi, Jianping and Zhang, Zhongyue and Wang, Xiaogang and Tyagi, Ambrish and Agrawal, Amit},
    title = {Context Encoding for Semantic Segmentation},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    month = {June},
    year = {2018}
}

Results

PASCAL VOC

Backbone Pretrain Crop Size Schedule Train/Eval Set mIoU Download
R-50-D8 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 75.53% cfg | model | log
R-50-D16 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 74.55% cfg | model | log
R-101-D8 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 77.61% cfg | model | log
R-101-D16 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/60 trainaug/val 76.41% cfg | model | log

ADE20k

Backbone Pretrain Crop Size Schedule Train/Eval Set mIoU Download
R-50-D8 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 40.60% cfg | model | log
R-50-D16 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 39.70% cfg | model | log
R-101-D8 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 43.43% cfg | model | log
R-101-D16 ImageNet-1k-224x224 512x512 LR/POLICY/BS/EPOCH: 0.01/poly/16/130 train/val 41.65% cfg | model | log

CityScapes

Backbone Pretrain Crop Size Schedule Train/Eval Set mIoU Download
R-50-D8 ImageNet-1k-224x224 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 77.98% cfg | model | log
R-50-D16 ImageNet-1k-224x224 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 75.98% cfg | model | log
R-101-D8 ImageNet-1k-224x224 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 78.70% cfg | model | log
R-101-D16 ImageNet-1k-224x224 512x1024 LR/POLICY/BS/EPOCH: 0.01/poly/8/220 train/val 77.46% cfg | model | log

More

You can also download the model weights from following sources: