-
-
Notifications
You must be signed in to change notification settings - Fork 108
/
README.md
37 lines (24 loc) · 2.82 KB
/
README.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
## Introduction
<a href="https://github.com/hszhao/ICNet">Official Repo</a>
<a href="https://github.com/SegmentationBLWX/sssegmentation/blob/main/ssseg/modules/models/segmentors/icnet/icnet.py">Code Snippet</a>
<details>
<summary align="left"><a href="https://arxiv.org/pdf/1704.08545.pdf">ICNet (ECCV'2018)</a></summary>
```latex
@inproceedings{zhao2018icnet,
title={Icnet for real-time semantic segmentation on high-resolution images},
author={Zhao, Hengshuang and Qi, Xiaojuan and Shen, Xiaoyong and Shi, Jianping and Jia, Jiaya},
booktitle={Proceedings of the European conference on computer vision (ECCV)},
pages={405--420},
year={2018}
}
```
</details>
## Results
#### CityScapes
| Backbone | Pretrain | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
| :-: | :-: | :-: | :-: | :-: | :-: | :-: |
| R-50-D8 | ImageNet-1k-224x224 | 832x832 | LR/POLICY/BS/EPOCH: 0.01/poly/8/440 | train/val | 76.60% | [cfg](https://raw.githubusercontent.com/SegmentationBLWX/sssegmentation/main/ssseg/configs/icnet/icnet_resnet50os8_cityscapes.py) | [model](https://github.com/SegmentationBLWX/modelstore/releases/download/ssseg_icnet/icnet_resnet50os8_cityscapes.pth) | [log](https://github.com/SegmentationBLWX/modelstore/releases/download/ssseg_icnet/icnet_resnet50os8_cityscapes.log) |
| R-101-D8 | ImageNet-1k-224x224 | 832x832 | LR/POLICY/BS/EPOCH: 0.01/poly/8/440 | train/val | 76.27% | [cfg](https://raw.githubusercontent.com/SegmentationBLWX/sssegmentation/main/ssseg/configs/icnet/icnet_resnet101os8_cityscapes.py) | [model](https://github.com/SegmentationBLWX/modelstore/releases/download/ssseg_icnet/icnet_resnet101os8_cityscapes.pth) | [log](https://github.com/SegmentationBLWX/modelstore/releases/download/ssseg_icnet/icnet_resnet101os8_cityscapes.log) |
## More
You can also download the model weights from following sources:
- BaiduNetdisk: https://pan.baidu.com/s/1gD-NJJWOtaHCtB0qHE79rA with access code **s757**