OCRNet (ECCV'2020)
@article{yuan2019object,
title={Object-contextual representations for semantic segmentation},
author={Yuan, Yuhui and Chen, Xilin and Wang, Jingdong},
journal={arXiv preprint arXiv:1909.11065},
year={2019}
}
Backbone | Pretrain | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|
R-50-D8 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 76.75% | cfg | model | log |
R-101-D8 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 78.82% | cfg | model | log |
HRNetV2p-W18-Small | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 72.80% | cfg | model | log |
HRNetV2p-W18 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 75.80% | cfg | model | log |
HRNetV2p-W48 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/60 | trainaug/val | 77.60% | cfg | model | log |
Backbone | Pretrain | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|
R-50-D8 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 42.47% | cfg | model | log |
R-101-D8 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 43.99% | cfg | model | log |
HRNetV2p-W18-Small | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 38.04% | cfg | model | log |
HRNetV2p-W18 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 39.85% | cfg | model | log |
HRNetV2p-W48 | ImageNet-1k-224x224 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 44.03% | cfg | model | log |
Backbone | Pretrain | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
---|---|---|---|---|---|---|
R-50-D8 | ImageNet-1k-224x224 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/440 | train/val | 79.40% | cfg | model | log |
R-101-D8 | ImageNet-1k-224x224 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/440 | train/val | 80.61% | cfg | model | log |
HRNetV2p-W18-Small | ImageNet-1k-224x224 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/440 | train/val | 79.30% | cfg | model | log |
HRNetV2p-W18 | ImageNet-1k-224x224 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/440 | train/val | 80.58% | cfg | model | log |
HRNetV2p-W48 | ImageNet-1k-224x224 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/8/440 | train/val | 81.44% | cfg | model | log |
You can also download the model weights from following sources:
- BaiduNetdisk: https://pan.baidu.com/s/1gD-NJJWOtaHCtB0qHE79rA with access code s757