-
-
Notifications
You must be signed in to change notification settings - Fork 108
/
README.md
37 lines (24 loc) · 3.31 KB
/
README.md
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
## Introduction
<a href="https://github.com/microsoft/Swin-Transformer">Official Repo</a>
<a href="https://github.com/SegmentationBLWX/sssegmentation/blob/main/ssseg/modules/models/backbones/swin.py">Code Snippet</a>
<details>
<summary align="left"><a href="https://arxiv.org/pdf/2103.14030.pdf">Swin Transformer (ICCV'2021)</a></summary>
```latex
@article{liu2021Swin,
title={Swin Transformer: Hierarchical Vision Transformer using Shifted Windows},
author={Liu, Ze and Lin, Yutong and Cao, Yue and Hu, Han and Wei, Yixuan and Zhang, Zheng and Lin, Stephen and Guo, Baining},
journal={arXiv preprint arXiv:2103.14030},
year={2021}
}
```
</details>
## Results
#### ADE20k
| Segmentor | Pretrain | Backbone | Crop Size | Schedule | Train/Eval Set | mIoU | Download |
| :-: | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
| UperNet | ImageNet-1k-224x224 | Swin-T | 512x512 | LR/POLICY/BS/EPOCH: 0.00006/poly/16/130 | train/val | 44.58% | [cfg](https://raw.githubusercontent.com/SegmentationBLWX/sssegmentation/main/ssseg/configs/swin/upernet_swintiny_ade20k.py) | [model](https://github.com/SegmentationBLWX/modelstore/releases/download/ssseg_swin/upernet_swintiny_ade20k.pth) | [log](https://github.com/SegmentationBLWX/modelstore/releases/download/ssseg_swin/upernet_swintiny_ade20k.log) |
| UperNet | ImageNet-1k-224x224 | Swin-S | 512x512 | LR/POLICY/BS/EPOCH: 0.00006/poly/16/130 | train/val | 48.39% | [cfg](https://raw.githubusercontent.com/SegmentationBLWX/sssegmentation/main/ssseg/configs/swin/upernet_swinsmall_ade20k.py) | [model](https://github.com/SegmentationBLWX/modelstore/releases/download/ssseg_swin/upernet_swinsmall_ade20k.pth) | [log](https://github.com/SegmentationBLWX/modelstore/releases/download/ssseg_swin/upernet_swinsmall_ade20k.log) |
| UperNet | ImageNet-22k-384x384 | Swin-B | 512x512 | LR/POLICY/BS/EPOCH: 0.00006/poly/16/130 | train/val | 51.02% | [cfg](https://raw.githubusercontent.com/SegmentationBLWX/sssegmentation/main/ssseg/configs/swin/upernet_swinbase_ade20k.py) | [model](https://github.com/SegmentationBLWX/modelstore/releases/download/ssseg_swin/upernet_swinbase_ade20k.pth) | [log](https://github.com/SegmentationBLWX/modelstore/releases/download/ssseg_swin/upernet_swinbase_ade20k.log) |
## More
You can also download the model weights from following sources:
- BaiduNetdisk: https://pan.baidu.com/s/1gD-NJJWOtaHCtB0qHE79rA with access code **s757**