-
-
Notifications
You must be signed in to change notification settings - Fork 108
/
unet.py
180 lines (168 loc) · 7.95 KB
/
unet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
'''
Function:
Implementation of UNet
Author:
Zhenchao Jin
'''
import torch
import torch.nn as nn
from ...utils import loadpretrainedweights
from .bricks import BuildNormalization, BuildActivation
'''DEFAULT_MODEL_URLS'''
DEFAULT_MODEL_URLS = {}
'''AUTO_ASSERT_STRUCTURE_TYPES'''
AUTO_ASSERT_STRUCTURE_TYPES = {}
'''BasicConvBlock'''
class BasicConvBlock(nn.Module):
def __init__(self, in_channels, out_channels, num_convs=2, stride=1, dilation=1, norm_cfg=None, act_cfg=None):
super(BasicConvBlock, self).__init__()
convs = []
for i in range(num_convs):
in_c, out_c = in_channels if i == 0 else out_channels, out_channels
s, d, p = stride if i == 0 else 1, 1 if i == 0 else dilation, 1 if i == 0 else dilation
conv = nn.Sequential(
nn.Conv2d(in_c, out_c, kernel_size=3, stride=s, padding=p, dilation=d, bias=False),
BuildNormalization(placeholder=out_c, norm_cfg=norm_cfg),
BuildActivation(act_cfg),
)
convs.append(conv)
self.convs = nn.Sequential(*convs)
'''forward'''
def forward(self, x):
out = self.convs(x)
return out
'''DeconvModule'''
class DeconvModule(nn.Module):
def __init__(self, in_channels, out_channels, norm_cfg=None, act_cfg=None, kernel_size=4, scale_factor=2):
super(DeconvModule, self).__init__()
assert (kernel_size - scale_factor >= 0) and (kernel_size - scale_factor) % 2 == 0
self.deconv_upsamping = nn.Sequential(
nn.ConvTranspose2d(in_channels, out_channels, kernel_size=kernel_size, stride=scale_factor, padding=(kernel_size - scale_factor) // 2),
BuildNormalization(placeholder=out_channels, norm_cfg=norm_cfg),
BuildActivation(act_cfg),
)
'''forward'''
def forward(self, x):
out = self.deconv_upsamping(x)
return out
'''InterpConv'''
class InterpConv(nn.Module):
def __init__(self, in_channels, out_channels, norm_cfg=None, act_cfg=None, conv_first=False, kernel_size=1, stride=1, padding=0,
upsample_cfg=dict(scale_factor=2, mode='bilinear', align_corners=False)):
super(InterpConv, self).__init__()
conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, bias=False),
BuildNormalization(placeholder=out_channels, norm_cfg=norm_cfg),
BuildActivation(act_cfg),
)
upsample = nn.Upsample(**upsample_cfg)
if conv_first:
self.interp_upsample = nn.Sequential(conv, upsample)
else:
self.interp_upsample = nn.Sequential(upsample, conv)
'''forward'''
def forward(self, x):
out = self.interp_upsample(x)
return out
'''UpConvBlock'''
class UpConvBlock(nn.Module):
def __init__(self, conv_block, in_channels, skip_channels, out_channels, num_convs=2, stride=1, dilation=1,
norm_cfg=None, act_cfg=None, upsample_type='InterpConv'):
super(UpConvBlock, self).__init__()
supported_upsamples = {
'InterpConv': InterpConv, 'DeconvModule': DeconvModule,
}
self.conv_block = conv_block(
in_channels=2 * skip_channels, out_channels=out_channels, num_convs=num_convs, stride=stride,
dilation=dilation, norm_cfg=norm_cfg, act_cfg=act_cfg
)
if upsample_type is not None:
assert upsample_type in supported_upsamples, 'unsupport upsample_type %s' % upsample_type
self.upsample = supported_upsamples[upsample_type](in_channels=in_channels, out_channels=skip_channels, norm_cfg=norm_cfg, act_cfg=act_cfg)
else:
self.upsample = nn.Sequential(
nn.Conv2d(in_channels, skip_channels, kernel_size=1, stride=1, padding=0, bias=False),
BuildNormalization(placeholder=skip_channels, norm_cfg=norm_cfg),
BuildActivation(act_cfg),
)
'''forward'''
def forward(self, skip, x):
x = self.upsample(x)
out = torch.cat([skip, x], dim=1)
out = self.conv_block(out)
return out
'''UNet'''
class UNet(nn.Module):
def __init__(self, structure_type, in_channels=3, base_channels=64, num_stages=5, strides=(1, 1, 1, 1, 1), enc_num_convs=(2, 2, 2, 2, 2), dec_num_convs=(2, 2, 2, 2),
downsamples=(True, True, True, True), enc_dilations=(1, 1, 1, 1, 1), dec_dilations=(1, 1, 1, 1), norm_cfg={'type': 'SyncBatchNorm'},
act_cfg={'type': 'ReLU', 'inplace': True}, upsample_type='InterpConv', pretrained=False, pretrained_model_path=''):
super(UNet, self).__init__()
# set attributes
self.structure_type = structure_type
self.in_channels = in_channels
self.enc_num_convs = enc_num_convs
self.dec_num_convs = dec_num_convs
self.num_stages = num_stages
self.strides = strides
self.downsamples = downsamples
self.base_channels = base_channels
self.enc_dilations = enc_dilations
self.dec_dilations = dec_dilations
self.norm_cfg = norm_cfg
self.act_cfg = act_cfg
self.upsample_type = upsample_type
self.pretrained = pretrained
self.pretrained_model_path = pretrained_model_path
# assert
assert (len(strides) == num_stages) and (len(enc_num_convs) == num_stages) \
and (len(dec_num_convs) == (num_stages - 1)) and (len(downsamples) == (num_stages - 1)) \
and (len(enc_dilations) == num_stages) and len(dec_dilations) == (num_stages - 1)
if structure_type in AUTO_ASSERT_STRUCTURE_TYPES:
for key, value in AUTO_ASSERT_STRUCTURE_TYPES[structure_type].items():
assert hasattr(self, key) and (getattr(self, key) == value)
# build encoder and decoder
self.encoder = nn.ModuleList()
self.decoder = nn.ModuleList()
for i in range(num_stages):
enc_conv_block = []
if i != 0:
if strides[i] == 1 and downsamples[i - 1]:
enc_conv_block.append(nn.MaxPool2d(kernel_size=2))
upsample = (strides[i] != 1 or downsamples[i - 1])
self.decoder.append(UpConvBlock(
conv_block=BasicConvBlock, in_channels=base_channels * 2**i, skip_channels=base_channels * 2**(i - 1),
out_channels=base_channels * 2**(i - 1), num_convs=dec_num_convs[i - 1], stride=1, dilation=dec_dilations[i - 1],
norm_cfg=norm_cfg, act_cfg=act_cfg, upsample_type=upsample_type if upsample else None,
))
enc_conv_block.append(BasicConvBlock(
in_channels=in_channels, out_channels=base_channels * 2**i, num_convs=enc_num_convs[i], stride=strides[i],
dilation=enc_dilations[i], norm_cfg=norm_cfg, act_cfg=act_cfg,
))
self.encoder.append((nn.Sequential(*enc_conv_block)))
in_channels = base_channels * 2**i
# load pretrained weights
if pretrained:
state_dict = loadpretrainedweights(
structure_type=structure_type, pretrained_model_path=pretrained_model_path, default_model_urls=DEFAULT_MODEL_URLS
)
self.load_state_dict(state_dict, strict=False)
'''forward'''
def forward(self, x):
self.checkinputdivisible(x)
enc_outs = []
for enc in self.encoder:
x = enc(x)
enc_outs.append(x)
dec_outs = [x]
for i in reversed(range(len(self.decoder))):
x = self.decoder[i](enc_outs[i], x)
dec_outs.append(x)
return dec_outs
'''checkinputdivisible'''
def checkinputdivisible(self, x):
h, w = x.shape[-2:]
whole_downsample_rate = 1
for i in range(1, self.num_stages):
if self.strides[i] == 2 or self.downsamples[i - 1]:
whole_downsample_rate *= 2
assert (h % whole_downsample_rate == 0) and (w % whole_downsample_rate == 0)