-
-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathocrnet.py
73 lines (71 loc) · 3.67 KB
/
ocrnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
'''
Function:
Implementation of OCRNet
Author:
Zhenchao Jin
'''
import copy
import torch.nn as nn
import torch.nn.functional as F
from ..base import BaseSegmentor
from ...losses import calculatelosses
from ....utils import SSSegOutputStructure
from .objectcontext import ObjectContextBlock
from .spatialgather import SpatialGatherModule
from ...backbones import BuildActivation, BuildNormalization
'''OCRNet'''
class OCRNet(BaseSegmentor):
def __init__(self, cfg, mode):
super(OCRNet, self).__init__(cfg, mode)
align_corners, norm_cfg, act_cfg, head_cfg = self.align_corners, self.norm_cfg, self.act_cfg, cfg['head']
# build auxiliary decoder
assert (cfg['auxiliary'] is not None) and isinstance(cfg['auxiliary'], dict), 'auxiliary must be given and only support dict type'
self.setauxiliarydecoder(cfg['auxiliary'])
# build bottleneck
self.bottleneck = nn.Sequential(
nn.Conv2d(head_cfg['in_channels'], head_cfg['feats_channels'], kernel_size=3, stride=1, padding=1, bias=False),
BuildNormalization(placeholder=head_cfg['feats_channels'], norm_cfg=norm_cfg),
BuildActivation(act_cfg),
)
# build spatial gather module
spatialgather_cfg = {
'scale': head_cfg['scale']
}
self.spatial_gather_module = SpatialGatherModule(**spatialgather_cfg)
# build object context block
self.object_context_block = ObjectContextBlock(
in_channels=head_cfg['feats_channels'], transform_channels=head_cfg['transform_channels'], scale=head_cfg['scale'],
align_corners=align_corners, norm_cfg=copy.deepcopy(norm_cfg), act_cfg=copy.deepcopy(act_cfg),
)
# build decoder
self.decoder = nn.Sequential(
nn.Dropout2d(head_cfg['dropout']),
nn.Conv2d(head_cfg['feats_channels'], cfg['num_classes'], kernel_size=1, stride=1, padding=0)
)
# freeze normalization layer if necessary
if cfg.get('is_freeze_norm', False): self.freezenormalization()
'''forward'''
def forward(self, data_meta):
img_size = data_meta.images.size(2), data_meta.images.size(3)
# feed to backbone network
backbone_outputs = self.transforminputs(self.backbone_net(data_meta.images), selected_indices=self.cfg['backbone'].get('selected_indices'))
# feed to auxiliary decoder
seg_logits_aux = self.auxiliary_decoder(backbone_outputs[-2])
# feed to bottleneck
feats = self.bottleneck(backbone_outputs[-1])
# feed to ocr module
context = self.spatial_gather_module(feats, seg_logits_aux)
feats = self.object_context_block(feats, context)
# feed to decoder
seg_logits = self.decoder(feats)
# return according to the mode
if self.mode in ['TRAIN', 'TRAIN_DEVELOP']:
seg_logits = F.interpolate(seg_logits, size=img_size, mode='bilinear', align_corners=self.align_corners)
seg_logits_aux = F.interpolate(seg_logits_aux, size=img_size, mode='bilinear', align_corners=self.align_corners)
loss, losses_log_dict = calculatelosses(
predictions={'loss_cls': seg_logits, 'loss_aux': seg_logits_aux}, annotations=data_meta.getannotations(), losses_cfg=self.cfg['losses'], pixel_sampler=self.pixel_sampler
)
ssseg_outputs = SSSegOutputStructure(mode=self.mode, loss=loss, losses_log_dict=losses_log_dict) if self.mode == 'TRAIN' else SSSegOutputStructure(mode=self.mode, loss=loss, losses_log_dict=losses_log_dict, seg_logits=seg_logits)
else:
ssseg_outputs = SSSegOutputStructure(mode=self.mode, seg_logits=seg_logits)
return ssseg_outputs