-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_genet.py
207 lines (175 loc) · 7.57 KB
/
train_genet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import numpy as np
import os, sys, time
import torch
from torch import nn, optim
from torch.utils.data import DataLoader, Dataset
from torchvision.models.resnet import resnet18
from tqdm import tqdm
from typing import Dict
from l5kit.data import LocalDataManager, ChunkedDataset
from l5kit.dataset import AgentDataset, EgoDataset
from l5kit.rasterization import build_rasterizer
from l5kit.geometry import *
from src.dataset import *
import pytorch_lightning as pl
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint, LearningRateMonitor
from torch.utils.data import Dataset, DataLoader
import bz2, pickle
#os.environ["CUDA_VISIBLE_DEVICES"]="0"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
DIR_INPUT = "lyft-motion-prediction-autonomous-vehicles"
SINGLE_MODE_SUBMISSION = f"{DIR_INPUT}/single_mode_sample_submission.csv"
MULTI_MODE_SUBMISSION = f"{DIR_INPUT}/multi_mode_sample_submission.csv"
DEBUG = False
cfg = {
'format_version': 4,
'model_params': {
'model_architecture': 'resnet50',
'history_num_frames': 10,
'history_step_size': 1,
'history_delta_time': 0.1,
'future_num_frames': 50,
'future_step_size': 1,
'future_delta_time': 0.1
},
'raster_params': {
'raster_size': [224, 160], ## [384, 128]
'pixel_size': [0.4, 0.4], ## 0.5 0.5
'ego_center': [0.25, 0.5],
'map_type': 'py_semantic',
'satellite_map_key': 'aerial_map/aerial_map.png',
'semantic_map_key': 'semantic_map/semantic_map.pb',
'dataset_meta_key': 'meta.json',
'filter_agents_threshold': 0.5
},
'train_data_loader': {
'key': 'scenes/train.zarr',
'batch_size': 128,
'shuffle': True,
'num_workers': 16,
},
'test_data_loader': {
'key': 'scenes/test.zarr',
'batch_size': 14,
'shuffle': True,
'num_workers': 8,
},
'val_data_loader': {
'key': 'scenes/validate.zarr',
'batch_size': 4,
'shuffle': True,
'num_workers': 0,
},
'train_params': {
'max_num_steps': 100 if DEBUG else 500000,
'checkpoint_every_n_steps': 5000,
# 'eval_every_n_steps': -1
}
}
# set env variable for data
os.environ["L5KIT_DATA_FOLDER"] = DIR_INPUT
class CheckpointEveryNSteps(pl.Callback):
"""
Save a checkpoint every N steps, instead of Lightning's default that checkpoints
based on validation loss.
"""
def __init__(
self,
save_step_frequency,
prefix="25frame_b5",
use_modelcheckpoint_filename=False,
):
"""
Args:
save_step_frequency: how often to save in steps
prefix: add a prefix to the name, only used if
use_modelcheckpoint_filename=False
use_modelcheckpoint_filename: just use the ModelCheckpoint callback's
default filename, don't use ours.
"""
self.save_step_frequency = save_step_frequency
self.prefix = prefix
self.use_modelcheckpoint_filename = use_modelcheckpoint_filename
def on_batch_end(self, trainer: pl.Trainer, _):
""" Check if we should save a checkpoint after every train batch """
epoch = trainer.current_epoch
global_step = trainer.global_step
if global_step % self.save_step_frequency == 0:
if self.use_modelcheckpoint_filename:
filename = trainer.checkpoint_callback.filename
else:
filename = f"{self.prefix}_{epoch}_{global_step}.ckpt"
ckpt_path = os.path.join(trainer.checkpoint_callback.dirpath, filename)
trainer.save_checkpoint(ckpt_path)
###
import torchvision
from src.loss import *
#from efficientnet_pytorch.utils import Conv2dStaticSamePadding
#from efficientnet_pytorch import EfficientNet
#from vit_pytorch import ViT
#from vit_pytorch.efficient import ViT
#from linformer import Linformer
import GENet
class LyftModel(pl.LightningModule):
def __init__(self, cfg: Dict, model_name="efficientnet-b1", num_modes=3):
super().__init__()
## c
num_history_channels = (cfg["model_params"]["history_num_frames"] + 1) * 2
num_in_channels = 3 + num_history_channels
# X, Y coords for the future positions (output shape: Bx50x2)
self.future_len = cfg["model_params"]["future_num_frames"]
num_targets = 2 * self.future_len
self.num_preds = num_targets * num_modes
self.num_modes = num_modes
self.genet = GENet.genet_large(pretrained=False, root='./GENet_params/', num_classes=self.num_preds + num_modes)
self.genet.module_list[0].netblock = torch.nn.Conv2d(25, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
# self.effnet0 = EfficientNet.from_pretrained(f'{model_name}', in_channels=65, num_classes=self.num_preds + num_modes,)
def forward(self, images):
## road
x = self.genet(images)
# pred (bs)x(modes)x(time)x(2D coords)
# confidences (bs)x(modes)
bs, _ = x.shape
tl = self.future_len
pred, confidences = torch.split(x, self.num_preds, dim=1)
pred = pred.view(bs, self.num_modes, self.future_len, 2)
assert confidences.shape == (bs, self.num_modes)
confidences = torch.softmax(confidences, dim=1)
return pred, confidences
def training_step(self, batch, batch_idx):
data = batch
inputs = batch["image"].to(device)
target_availabilities = data["target_availabilities"].to(device)
targets = data["target_positions"].to(device)
pred, confidences = self(inputs)
## back
## TODO: log learning rate
loss = pytorch_neg_multi_log_likelihood_batch(targets, pred, confidences, target_availabilities)
result = pl.TrainResult(loss)
result.log('train_loss', loss, on_epoch=True)
return result
def configure_optimizers(self):
## lr find
#optimizer = torch.optim.AdamW(self.parameters(), lr=(5e-5 or self.learning_rate))
optimizer = torch.optim.AdamW(self.parameters(), lr=0.0003, weight_decay=0.)
#optimizer = AdamP(self.parameters(), lr=0.00003, betas=(0.9, 0.999), weight_decay=0., nesterov=True)
#optimizer = optim.Lamb(self.parameters(), lr= 1e-4, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, )
#scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, max_lr=1e-3, steps_per_epoch=int(22000000/64), epochs=10)
return [optimizer]#, [scheduler]
if __name__ == '__main__':
callbacks = [LearningRateMonitor(logging_interval='step'),
CheckpointEveryNSteps(prefix='vit_25frame', save_step_frequency=5000)]
train_dataset = MotionPredictDataset(cfg)
train_cfg = cfg['train_data_loader']
train_loader = DataLoader(train_dataset, batch_size=train_cfg['batch_size'],
num_workers=train_cfg['num_workers'], shuffle=train_cfg['shuffle'], pin_memory=False)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = LyftModel(cfg)#.to(device)
#ckpt_path = "25frame_vit/lightning_logs/version_3/checkpoints/vit_25frame_1_5000.ckpt"
#ckpt = torch.load(ckpt_path, map_location="cpu")
#model.load_state_dict(ckpt['state_dict'])
# print(f"From {ckpt_path}")
# resume_from_checkpoint=ckpt_path,
trainer = Trainer(gradient_clip_val=1., default_root_dir='./25frame_vit', gpus=1, precision=16,max_epochs=100, callbacks=callbacks)# gradient_clip_val=0.5 # precision=16,, limit_train_batches=0.8)
trainer.fit(model, train_loader)